Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where You-Di Liao is active.

Publication


Featured researches published by You-Di Liao.


Nature Medicine | 2008

Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis

Wen-Hung Chung; Shuen-Iu Hung; Jui-Yung Yang; Shih-Chi Su; Shien-Ping Huang; Chun-Yu Wei; See-Wen Chin; Chien-Chun Chiou; Sung-Chao Chu; Hsin-Chun Ho; Chih-Hsun Yang; Chi-Fang Lu; Jer-Yuarn Wu; You-Di Liao; Yuan-Tsong Chen

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening adverse drug reactions characterized by massive epidermal necrosis, in which the specific danger signals involved remain unclear. Here we show that blister cells from skin lesions of SJS-TEN primarily consist of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, and both blister fluids and cells were cytotoxic. Gene expression profiling identified granulysin as the most highly expressed cytotoxic molecule, confirmed by quantitative PCR and immunohistochemistry. Granulysin concentrations in the blister fluids were two to four orders of magnitude higher than perforin, granzyme B or soluble Fas ligand concentrations, and depleting granulysin reduced the cytotoxicity. Granulysin in the blister fluids was a 15-kDa secretory form, and injection of it into mouse skin resulted in features mimicking SJS-TEN. Our findings demonstrate that secretory granulysin is a key molecule responsible for the disseminated keratinocyte death in SJS-TEN and highlight a mechanism for CTL- or NK cell—mediated cytotoxicity that does not require direct cellular contact.


Journal of Biological Chemistry | 2007

The Flexible and Clustered Lysine Residues of Human Ribonuclease 7 Are Critical for Membrane Permeability and Antimicrobial Activity

Yu-Chie Huang; Yu-Min Lin; Ting-Wei Chang; Shih-Jung Wu; Yan-Shin Lee; Margaret Dah-Tsyr Chang; Chinpan Chen; Shih-Hsiung Wu; You-Di Liao

The ubiquitous ribonucleases (RNases) play important roles in RNA metabolism, angiogenesis, neurotoxicity, and antitumor or antimicrobial activity. Only the antimicrobial RNases possess high positively charged residues, although their mechanisms of action remain unclear. Here, we report on the role of cationic residues of human RNase7 (hRNase7) in its antimicrobial activity. It exerted antimicrobial activity against bacteria and yeast, even at 4 °C. The bacterial membrane became permeable to the DNA-binding dye SYTOX® Green in only a few minutes after bactericidal RNase treatment. NMR studies showed that the 22 positively charged residues (Lys18 and Arg4) are distributed into three clusters on the surface of hRNase7. The first cluster, K1,K3,K111,K112, was located at the flexible coil near the N terminus, whereas the other two, K32,K35 and K96,R97,K100, were located on rigid secondary structures. Mutagenesis studies showed that the flexible cluster K1,K3,K111,K112, rather than the catalytic residues His15, Lys38, and His123 or other clusters such as K32,K35 and K96,R97,K100, is critical for the bactericidal activity. We suggest that the hRNase7 binds to bacterial membrane and renders the membrane permeable through the flexible and clustered Lys residues K1,K3,K111,K112. The conformation of hRNase7 can be adapted for pore formation or disruption of bacterial membrane even at 4 °C.


Journal of Biological Chemistry | 2010

Outer Membrane Protein I of Pseudomonas aeruginosa Is a Target of Cationic Antimicrobial Peptide/Protein

Yu-Min Lin; Shih-Jung Wu; Ting-Wei Chang; Chiu-Feng Wang; Ching-Shu Suen; Ming-Jing Hwang; Margaret Dah-Tsyr Chang; Yuan-Tsong Chen; You-Di Liao

Cationic antimicrobial peptides/proteins (AMPs) are important components of the host innate defense mechanisms against invading microorganisms. Here we demonstrate that OprI (outer membrane protein I) of Pseudomonas aeruginosa is responsible for its susceptibility to human ribonuclease 7 (hRNase 7) and α-helical cationic AMPs, instead of surface lipopolysaccharide, which is the initial binding site of cationic AMPs. The antimicrobial activities of hRNase 7 and α-helical cationic AMPs against P. aeruginosa were inhibited by the addition of exogenous OprI or anti-OprI antibody. On modification and internalization of OprI by hRNase 7 into cytosol, the bacterial membrane became permeable to metabolites. The lipoprotein was predicted to consist of an extended loop at the N terminus for hRNase 7/lipopolysaccharide binding, a trimeric α-helix, and a lysine residue at the C terminus for cell wall anchoring. Our findings highlight a novel mechanism of antimicrobial activity and document a previously unexplored target of α-helical cationic AMPs, which may be used for screening drugs to treat antibiotic-resistant bacterial infection.


Journal of Biological Chemistry | 2012

Outer Membrane Lipoprotein Lpp Is Gram-negative Bacterial Cell Surface Receptor for Cationic Antimicrobial Peptides

Ting-Wei Chang; Yu-Ming Lin; Chiu-Feng Wang; You-Di Liao

Background: Outer membrane protein Lpp of Gram-negative bacteria acts as a receptor for antimicrobial peptide. Results: We identify and characterize the Lpp, which is responsible for the recognition of cationic antimicrobial peptide. Conclusion: Lpp is a new target of antimicrobial peptide. Significance: Lpp may be used as a ligand to develop antimicrobial materials. Antimicrobial peptides/proteins (AMPs) are important components of the host innate defense mechanisms. Here we demonstrate that the outer membrane lipoprotein, Lpp, of Enterobacteriaceae interacts with and promotes susceptibility to the bactericidal activities of AMPs. The oligomeric Lpp was specifically recognized by several cationic α-helical AMPs, including SMAP-29, CAP-18, and LL-37; AMP-mediated bactericidal activities were blocked by anti-Lpp antibody blocking. Blebbing of the outer membrane and increase in membrane permeability occurred in association with the coordinate internalization of Lpp and AMP. Interestingly, the specific binding of AMP to Lpp was resistant to divalent cations and salts, which were able to inhibit the bactericidal activities of some AMPs. Furthermore, using His-tagged Lpp as a ligand, we retrieved several characterized AMPs, including SMAP-29 and hRNase 7, from a peptide library containing crude mammalian cell lysates. Overall, this study explores a new mechanism and target of antimicrobial activity and provides a novel method for screening of antimicrobials for use against drug-resistant bacteria.


Current Pharmaceutical Design | 2013

Differential Influences of Gastric Bypass and Sleeve Gastrectomy on Plasma Nesfatin-1 and Obestatin Levels in Patients with Type 2 Diabetes Mellitus

Wei-Jei Lee; Chih-Yen Chen; Kong-Han Ser; Keong Chong; Shu-Chun Chen; Pui-Ching Lee; You-Di Liao; Shou-Dong Lee

OBJECTIVE The mechanisms by which bariatric surgeries, including gastric bypass (GB) and sleeve gastrectomy (SG), achieve remission of type 2 diabetes mellitus (T2DM) and sustained weight reduction are unknown. We hypothesized that the novel anorexic hormone nesfatin-1 and another new hormone obestatin might contribute to the marked improvement in glycemic homeostasis and weight loss in diabetics after GB and SG. METHODS A hospital-based, prospective study was conducted. Overnight fasting plasma concentrations of nesfatin-1 and obestatin were analyzed in T2DM patients before surgery, and at 3 and 12 months after laparoscopic GB (n =12) and SG (n = 6). RESULTS At 12 months, reductions of body mass index (BMI), fasting blood glucose, and glycated hemoglobin were similar between GB and SG groups (P all > 0.05). Plasma nesfatin-1 levels in patients undergoing GB or SG significantly decreased after surgeries (P both < 0.05). In contrast, plasma obestatin concentrations significantly increased in patients after SG (P < 0.05) but without any alteration after GB. The alterations of plasma nesfatin-1 were significantly and negatively associated with the reduction of fasting blood glucose (P <0.05) at 12 months after GB and SG. In the SG group, the reduction of nesfatin-1 significantly and positively correlated with the decrease of BMI (P < 0.05). CONCLUSIONS GB and SG produce differential influences with regards to circulating nesfatin-1 and obestatin levels in non-morbidly obese, T2DM patients. Circulating nesfatin-1 may modulate glucose homeostasis in two surgical procedures, and participate in regulating body weight in SG.


PLOS Pathogens | 2013

Identification of a novel antimicrobial peptide from human hepatitis B virus core protein arginine-rich domain (ARD).

Heng-Li Chen; Pei-Yi Su; Ya-Shu Chang; Szu-Yao Wu; You-Di Liao; Hui-Ming Yu; Tsai-Ling Lauderdale; Kaichih Chang; Chiaho Shih

The rise of multidrug-resistant (MDR) pathogens causes an increasing challenge to public health. Antimicrobial peptides are considered a possible solution to this problem. HBV core protein (HBc) contains an arginine-rich domain (ARD) at its C-terminus, which consists of 16 arginine residues separated into four clusters (ARD I to IV). In this study, we demonstrated that the peptide containing the full-length ARD I–IV (HBc147-183) has a broad-spectrum antimicrobial activity at micro-molar concentrations, including some MDR and colistin (polymyxin E)-resistant Acinetobacter baumannii. Furthermore, confocal fluorescence microscopy and SYTOX Green uptake assay indicated that this peptide killed Gram-negative and Gram-positive bacteria by membrane permeabilization or DNA binding. In addition, peptide ARD II–IV (HBc153-176) and ARD I–III (HBc147-167) were found to be necessary and sufficient for the activity against P. aeruginosa and K. peumoniae. The antimicrobial activity of HBc ARD peptides can be attenuated by the addition of LPS. HBc ARD peptide was shown to be capable of direct binding to the Lipid A of lipopolysaccharide (LPS) in several in vitro binding assays. Peptide ARD I–IV (HBc147-183) had no detectable cytotoxicity in various tissue culture systems and a mouse animal model. In the mouse model by intraperitoneal (i.p.) inoculation with Staphylococcus aureus, timely treatment by i.p. injection with ARD peptide resulted in 100-fold reduction of bacteria load in blood, liver and spleen, as well as 100% protection of inoculated animals from death. If peptide was injected when bacterial load in the blood reached its peak, the protection rate dropped to 40%. Similar results were observed in K. peumoniae using an IVIS imaging system. The finding of anti-microbial HBc ARD is discussed in the context of commensal gut microbiota, development of intrahepatic anti-viral immunity and establishment of chronic infection with HBV. Our current results suggested that HBc ARD could be a new promising antimicrobial peptide.


Journal of Molecular Biology | 2003

Solution structure of the cytotoxic RNase 4 from oocytes of bullfrog Rana catesbeiana.

Chun-Hua Hsu; You-Di Liao; Yun-Ru Pan; Lih-Woan Chen; Shih-Hsiung Wu; Ying-Jen Leu; Chinpan Chen

Cytotoxic ribonucleases with antitumor activity are mainly found in the oocytes and early embryos of frogs. Native RC-RNase 4 (RNase 4), consisting of 106 residues linked with four disulfide bridges, is a cytotoxic ribonuclease isolated from oocytes of bullfrog Rana catesbeiana. RNase 4 belongs to the bovine pancreatic ribonuclease (RNase A) superfamily. Recombinant RC-RNase 4 (rRNase 4), which contains an additional Met residue and glutamine instead of pyroglutamate at the N terminus, was found to possess less catalytic and cytotoxic activities than RNase 4. Equilibrium thermal and guanidine-HCl denaturation CD measurements revealed that RNase 4 is more thermally and chemically stable than rRNase 4. However, CD and NMR data showed that there is no gross conformational change between native and recombinant RNase 4. The NMR solution structure of rRNase 4 was determined to comprise three alpha-helices and two sets of antiparallel beta-sheets. Superimposition of each structure with the mean structure yielded an average root mean square deviation (RMSD) of 0.72(+/-0.14)A for the backbone atoms, and 1.42(+/-0.19)A for the heavy atoms in residues 3-105. A comparison of the 3D structure of rRNase 4 with the structurally and functionally related cytotoxic ribonuclease, onconase (ONC), showed that the two H-bonds in the N-terminal pyroglutamate of ONC were not present at the corresponding glutamine residue of rRNase 4. We suggest that the loss of these two H-bonds is one of the key factors responsible for the reductions of the conformational stability, catalytic and cytotoxic activities in rRNase 4. Furthermore, the differences of side-chain conformations of subsite residues among RNase A, ONC and rRNase 4 are related to their distinct catalytic activities and base preferences.


Molecular Medicine Reports | 2012

Impact of intracerebroventricular obestatin on plasma acyl ghrelin, des-acyl ghrelin and nesfatin-1 levels, and on gastric emptying in rats

Chih-Yen Chen; Wei-Jei Lee; Keong Chong; Shou-Dong Lee; You-Di Liao

Obestatin, which is a putative 23-amino-acid peptide, is derived from the C-terminal part of the mammalian preproghrelin gene. Nesfatin-1 mRNA is co-expressed with ghrelin in gastric endocrine X/A-like cells; therefore, nesfatin-1 may also interact with preproghrelin gene products in the stomach. In this study, we investigated the impact of obestatin on the plasma levels of acyl ghrelin, des-acyl ghrelin and nesfatin-1, and on the gastric emptying of a solid nutrient meal 2 h after an intracerebroventricular (ICV) injection in conscious, fasted rats. The rats were implanted with ICV catheters. Plasma levels of acyl ghrelin, des-acyl ghrelin and nesfatin-1, expected to be co-expressed with obestatin, were measured, whereas the human/rat corticotropin-releasing factor (h/rCRF) was applied as an inhibitor of gastric emptying. The ICV administration of obestatin (0.1, 0.3 and 1.0 nmol/rat) did not modify the plasma acyl ghrelin and des-acyl ghrelin levels, the acyl ghrelin/des-acyl ghrelin ratio and nesfatin-1 concentrations. The ICV acute administration of obestatin had no influence on the 2-h rate of gastric emptying of a solid nutrient meal, but the ICV h/rCRF injection delayed it. The weight of food ingested 1 h before ICV injection significantly, but negatively correlated with the gastric emptying of a solid nutrient meal. Our study indicates that the ICV injection of obestatin does not change the 2-h rate of gastric emptying of a solid nutrient meal and the relatively weak interrelationships between ghrelin gene products and nesfatin-1. However, the weight of the ingested food negatively affects the gastric emptying of a solid nutrient meal in conscious, fasted rats.


PLOS ONE | 2016

Antimicrobial Properties of an Immunomodulator - 15 kDa Human Granulysin

Hung-Mu Wei; Li-Chih Lin; Chiu-Feng Wang; Yi-Jang Lee; Yuan-Tsong Chen; You-Di Liao

Granulysin, a cationic protein expressed by human natural killer cells and cytotoxic T lymphocytes, is a mediator for drug-induced Stevens-Johnson syndrome and graft-versus-host disease. Some 15 kDa granulysin are processed into 9 kDa forms and sequestered in cytolytic granules, while others are constitutively secreted into body fluids. Both 9 and 15 kDa granulysin have been shown to be a serum marker for cell-mediated immunity. Furthermore, 15 kDa is able to activate monocyte differentiation. However, its antimicrobial properties have not been clearly addressed. Here, we report a novel method to prepare both the soluble 9 and 15 kDa granulysin and show that the 15 kDa form is more effective than the 9 kDa form in exerting specific antimicrobial activity against Pseudomonas aeruginosa within a range of few micromolars. We also show that the 15 kDa granulysin is able to hyperpolarize the membrane potential and increase membrane permeability of treated bacteria. Interestingly, the bactericidal activity and membrane permeability of the granulysins were markedly reduced at lower pH (pH 5.4) as a result of probable increase in hydrophobicity of the granulysins. Additionally, we’ve also shown the granulysin to inhibit biofilm formation by P. aeruginosa. These results suggest that the 15 kDa granulysin exhibits a novel mechanism in bacteria killing in a way that’s different from most antimicrobial peptides. Our novel granulysin preparation methodology will be useful for further study of action mechanisms of other antimicrobial, cytotoxic and immunomodulating properties in granulysin-mediated diseases.


Antimicrobial Agents and Chemotherapy | 2015

Key Residues of Outer Membrane Protein OprI Involved in Hexamer Formation and Bacterial Susceptibility to Cationic Antimicrobial Peptides

Ting-Wei Chang; Chiu-Feng Wang; Hsin-Jye Huang; Iren Wang; Shang-Te Danny Hsu; You-Di Liao

ABSTRACT Antimicrobial peptides (AMPs) are important components of the host innate defense mechanism against invading pathogens. Our previous studies have shown that the outer membrane protein, OprI from Pseudomonas aeruginosa or its homologue, plays a vital role in the susceptibility of Gram-negative bacteria to cationic α-helical AMPs (Y. M. Lin, S. J. Wu, T. W. Chang, C. F. Wang, C. S. Suen, M. J. Hwang, M. D. Chang, Y. T. Chen, Y. D. Liao, J Biol Chem 285:8985–8994, 2010, http://dx.doi.org/10.1074/jbc.M109.078725; T. W. Chang, Y. M. Lin, C. F. Wang, Y. D. Liao, J Biol Chem 287:418–428, 2012, http://dx.doi.org/10.1074/jbc.M111.290361). Here, we obtained two forms of recombinant OprI: rOprI-F, a hexamer composed of three disulfide-bridged dimers, was active in AMP binding, while rOprI-R, a trimer, was not. All the subunits predominantly consisted of α-helices and exhibited rigid structures with a melting point centered around 76°C. Interestingly, OprI tagged with Escherichia coli signal peptide was expressed in a hexamer, which was anchored on the surface of E. coli, possibly through lipid acids added at the N terminus of OprI and involved in the binding and susceptibility to AMP as native P. aeruginosa OprI. Deletion and mutation studies showed that Cys1 and Asp27 played a key role in hexamer formation and AMP binding, respectively. The increase of OprI hydrophobicity upon AMP binding revealed that it undergoes conformational changes for membrane fusion. Our results showed that OprI on bacterial surfaces is responsible for the recruitment and susceptibility to amphipathic α-helical AMPs and may be used to screen antimicrobials.

Collaboration


Dive into the You-Di Liao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun-Hua Hsu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge