Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where You Hong Cheng is active.

Publication


Featured researches published by You Hong Cheng.


Molecular and Cellular Endocrinology | 2006

Progesterone resistance in endometriosis: Link to failure to metabolize estradiol

Serdar E. Bulun; You Hong Cheng; Ping Yin; Gonca Imir; Hiroki Utsunomiya; Erkut Attar; Joy Innes; J. Julie Kim

Endometriosis is the most common cause of pelvic pain and affects an estimated 5 million women in the US. The biologically active estrogen estradiol (E2) is the best-defined mitogen for the growth and inflammation processes in the ectopic endometriotic tissue that commonly resides on the pelvic organs. Progesterone and progestins may relieve pain by limiting growth and inflammation in endometriosis but a portion of patients with endometriosis and pelvic pain do not respond to treatment with progestins. Moreover, progesterone-induced molecular changes in the eutopic (intrauterine) endometrial tissue of women with endometriosis are either blunted or undetectable. These in vivo observations are indicative of resistance to progesterone action in endometriosis. The molecular basis of progesterone resistance in endometriosis may be related to an overall reduction in the levels of progesterone receptors (PRs) and the lack of the PR isoform named progesterone receptor B (PR-B). In normal endometrium, progesterone acts on stromal cells to induce secretion of paracrine factor(s). These unknown factor(s) act on neighboring epithelial cells to induce the expression of the enzyme 17beta-hydroxysteroid dehydrogenase type 2 (17beta-HSD-2), which metabolizes the biologically active estrogen E2 to estrone (E1). In endometriotic tissue, progesterone does not induce epithelial 17beta-HSD-2 expression due to a defect in stromal cells. The inability of endometriotic stromal cells to produce progesterone-induced paracrine factors that stimulate 17beta-HSD-2 may be due to the lack of PR-B and very low levels of progesterone receptor A (PR-A) observed in vivo in endometriotic tissue. The end result is deficient metabolism of E2 in endometriosis giving rise to high local concentrations of this local mitogen. The cellular and molecular mechanisms underlying progesterone resistance and failure to metabolize E2 in endometriosis are reviewed.


Biology of Reproduction | 2007

Promoter Methylation Regulates Estrogen Receptor 2 in Human Endometrium and Endometriosis

Qing Xue; Zhihong Lin; You Hong Cheng; Chiang Ching Huang; Erica E. Marsh; Ping Yin; Magdy P. Milad; Edmond Confino; Scott Reierstad; Joy Innes; Serdar E. Bulun

Abstract Steroid receptors in the stromal cells of endometrium and its disease counterpart tissue endometriosis play critical physiologic roles. We found that mRNA and protein levels of estrogen receptor 2 (ESR2) were strikingly higher, whereas levels of estrogen receptor 1 (ESR1), total progesterone receptor (PGR), and progesterone receptor B (PGR B) were significantly lower in endometriotic versus endometrial stromal cells. Because ESR2 displayed the most striking levels of differential expression between endometriotic and endometrial cells, and the mechanisms for this difference are unknown, we tested the hypothesis that alteration in DNA methylation is a mechanism responsible for severely increased ESR2 mRNA levels in endometriotic cells. We identified a CpG island occupying the promoter region (−197/+359) of the ESR2 gene. Bisulfite sequencing of this region showed significantly higher methylation in primary endometrial cells (n = 8 subjects) versus endometriotic cells (n = 8 subjects). The demethylating agent 5-aza-2′-deoxycytidine significantly increased ESR2 mRNA levels in endometrial cells. Mechanistically, we employed serial deletion mutants of the ESR2 promoter fused to the luciferase reporter gene and transiently transfected into both endometriotic and endometrial cells. We demonstrated that the critical region (−197/+372) that confers promoter activity also bears the CpG island, and the activity of the ESR2 promoter was strongly inactivated by in vitro methylation. Taken together, methylation of a CpG island at the ESR2 promoter region is a primary mechanism responsible for differential expression of ESR2 in endometriosis and endometrium. These findings may be applied to a number of areas ranging from diagnosis to the treatment of endometriosis.


Seminars in Reproductive Medicine | 2010

Estrogen Receptor-β, Estrogen Receptor-α, and Progesterone Resistance in Endometriosis

Serdar E. Bulun; You Hong Cheng; Mary Ellen Pavone; Qing Xue; Erkut Attar; Elena Trukhacheva; Hideki Tokunaga; Hiroki Utsunomiya; Ping Yin; Xia Luo; Zhihong Lin; Gonca Imir; Stephen Thung; Emily Su; J. Julie Kim

Loss of progesterone signaling in the endometrium may be a causal factor in the development of endometriosis, and progesterone resistance is commonly observed in women with this disease. In endometriotic stromal cells, the levels of progesterone receptor (PR), particularly the PR-B isoform, are significantly decreased, leading to a loss of paracrine signaling. PR deficiency likely underlies the development of progesterone resistance in women with endometriosis who no longer respond to progestin therapy. Here we review the complex epigenetic and transcriptional mechanisms leading to PR deficiency. The initial event may involve deficient methylation of the estrogen receptor (ER)beta promoter resulting in pathologic overexpression of ERbeta in endometriotic stromal cells. We speculate that alterations in the relative levels of ERbeta and ERalpha in endometrial tissue dictate E2-regulated PR expression, such that a decreased ERalpha-tauomicron-ERbeta ratio may result in suppression of PR. In this review, we propose a molecular model that may be responsible for changes in ERbeta and ERalpha leading to PR loss and progesterone resistance in endometriosis.


The Journal of Clinical Endocrinology and Metabolism | 2009

Estrogen Receptor (ER) β Regulates ERα Expression in Stromal Cells Derived from Ovarian Endometriosis

Elena Trukhacheva; Zhihong Lin; Scott Reierstad; You Hong Cheng; Magdy P. Milad; Serdar E. Bulun

CONTEXT Estradiol and its nuclear receptors, estrogen receptor (ER) alpha and ERbeta, play critical roles in endometrium and endometriosis. Levels of ERbeta, due to pathological hypomethylation of its promoter, are significantly higher in endometriotic vs. endometrial tissue and stromal cells, whereas ERalpha levels are lower in endometriosis. Estradiol regulates ERalpha gene expression via its alternatively used promoters A, B, and C. OBJECTIVE The aim of the study was to determine whether high levels of ERbeta in endometriotic stromal cells from ovarian endometriomas regulate ERalpha gene expression. RESULTS ERbeta knockdown significantly increased ERalpha mRNA and protein levels in endometriotic stromal cells. Conversely, ERbeta overexpression in endometrial stromal cells decreased ERalpha mRNA and protein levels. ERbeta knockdown significantly decreased proliferation of endometriotic stromal cells. Chromatin immunoprecipitation assays demonstrated that estradiol enhanced ERbeta binding to nonclassical activator protein 1 and specificity protein 1 motifs in the ERalpha gene promoters A and C and a classic estrogen response element in promoter B in endometriotic stromal cells. CONCLUSIONS High levels of ERbeta suppress ERalpha expression and response to estradiol in endometrial and endometriotic stromal cells via binding to classic and nonclassic DNA motifs in alternatively used ERalpha promoters. ERbeta also regulates cell cycle progression and might contribute to proliferation of endometriotic stromal cells. We speculate that a significantly increased ratio of ERbeta:ERalpha in endometriotic tissues may also suppress progesterone receptor expression and contribute to progesterone resistance. Thus, ERbeta may serve as a significant therapeutic target for endometriosis.


Molecular Endocrinology | 2008

Upstream Stimulatory Factor-2 Regulates Steroidogenic Factor-1 Expression in Endometriosis

Hiroki Utsunomiya; You Hong Cheng; Zhihong Lin; Scott Reierstad; Ping Yin; Erkut Attar; Qing Xue; Gonca Imir; Steven Thung; Elena Trukhacheva; Takashi Suzuki; Hironobu Sasano; J. Julie Kim; Nobuo Yaegashi; Serdar E. Bulun

Local estrogen biosynthesis is a major factor in the pathogenesis of endometriosis. Aberrant expression of steroidogenic acute regulatory protein (StAR) and aromatase in endometriotic tissue leads to an up-regulation of estrogen production. The transcription factor steroidogenic factor-1 (SF-1) activates the promoters of both StAR and aromatase in endometriotic tissue. We investigated differences in SF-1 expression in endometriotic tissue and normally located endometrium to elucidate the mechanism underlying increased StAR and aromatase activities in endometriosis. Serial deletion and site-directed mutants of the SF-1 promoter showed that an E-box sequence was critical for its activity in endometriotic stromal cells. EMSAs showed that the upstream stimulatory factor (USF) 1 and 2 in nuclear extracts from endometrial and endometriotic stromal cells bound to the E-box. Chromatin-immunoprecipitation-PCR assay, however, demonstrated in intact cells that binding activity of USF2 to the SF-1 promoter was strikingly higher than that of USF1 in endometriotic stromal cells and that USF1 or USF2 binding activity was hardly detectable in endometrial stromal cells. Moreover, knockdown of USF2 but not USF1 resulted in robust and consistent down-regulation of SF-1 and its target genes StAR and aromatase in endometriotic stromal cells. USF2 but not USF1 mRNA and protein levels were significantly higher in endometriotic vs. endometrial stromal cells. In vivo, USF2 mRNA and immunoreactive USF2 levels in endometriotic tissues were strikingly higher than those in endometrium. Taken together, the elevated levels of USF2 in endometriosis account for, in part, the aberrant expression of SF-1 and its target gene StAR and aromatase.


Molecular and Cellular Endocrinology | 2009

Steroidogenic factor-1 and endometriosis

Serdar E. Bulun; Hiroki Utsunomiya; Zhihong Lin; Ping Yin; You Hong Cheng; Mary Ellen Pavone; Hideki Tokunaga; Elena Trukhacheva; Erkut Attar; Bilgin Gurates; Magdy P. Milad; Edmond Confino; Emily Su; Scott Reierstad; Qing Xue

Endometriosis is a common and chronic disease characterized by persistent pelvic pain and infertility. Estradiol is essential for growth and inflammation in endometriotic tissue. The complete cascade of steroidogenic proteins/enzymes including aromatase is present in endometriosis leading to de novo estradiol synthesis. PGE(2) induces the expression of the genes that encode these enzymes. Upon PGE(2) treatment, coordinate recruitment of the nuclear receptor SF-1 to the promoters of these steroidogenic genes is the key event for estradiol synthesis. SF-1 is the key factor determining that an endometriotic cell will respond to PGE(2) by increased estradiol formation. The presence of SF-1 in endometriosis and its absence in endometrium is determined primarily by the methylation of its promoter. The key steroidogenic enzyme in endometriosis is aromatase encoded by a single gene because its inhibition blocks all estradiol biosynthesis. Aromatase inhibitors diminish endometriotic implants and associated pain refractory to existing treatments in affected women.


Seminars in Reproductive Medicine | 2010

17β-Hydroxysteroid Dehydrogenase-2 Deficiency and Progesterone Resistance in Endometriosis

Serdar E. Bulun; You Hong Cheng; Mary Ellen Pavone; Ping Yin; Gonca Imir; Hiroki Utsunomiya; Stephen Thung; Qing Xue; Erica E. Marsh; Hideki Tokunaga; Hiroshi Ishikawa; Takeshi Kurita; Emily Su

Estradiol (E2) stimulates the growth and inflammation in the ectopic endometriotic tissue that commonly resides on the pelvic organs. Several clinical and laboratory-based observations are indicative of resistance to progesterone action in endometriosis. The molecular basis of progesterone resistance in endometriosis may be related to an overall reduction in the levels of progesterone receptor (PR). In normal endometrium, progesterone acts via PR on stromal cells to induce secretion of paracrine factor(s) that in turn stimulate neighboring epithelial cells to express the enzyme 17beta-hydroxysteroid dehydrogenase type 2 (HSD17B2). HSD17B2 is an extremely efficient enzyme and rapidly metabolizes the biologically potent estrogen E2 to weakly estrogenic estrone. In endometriotic tissue, progesterone is incapable of inducing epithelial HSD17B2 expression due to a defect in stromal cells. The inability of endometriotic stromal cells to produce progesterone-induced paracrine factors that stimulate HSD17B2 may be due to the very low levels of PR observed in vivo in endometriotic tissue. The end result is deficient metabolism of E2 in endometriosis giving rise to high local concentrations of this mitogen. The molecular details of this physiological paracrine interaction between the stroma and epithelium in normal endometrium and its lack thereof in endometriosis are discussed.


The Journal of Clinical Endocrinology and Metabolism | 2010

Altered Retinoid Uptake and Action Contributes to Cell Survival in Endometriosis

Mary Ellen Pavone; Scott Reierstad; Hui Sun; Magdy P. Milad; Serdar E. Bulun; You Hong Cheng

CONTEXT Retinoic acid (RA) controls multiple biological processes via exerting opposing effects on cell survival. Retinol uptake into cells is controlled by stimulated by RA 6 (STRA6). RA is then produced from retinol in the cytosol. Partitioning of RA between the nuclear receptors RA receptor α and peroxisome-proliferator-activated receptor β/δ is regulated by cytosol-to-nuclear shuttling proteins cellular RA binding protein 2 (CRABP2) and fatty acid binding protein 5 (FABP5), which induce apoptosis or enhance survival, respectively. The roles of these mechanisms in endometrium or endometriosis remain unknown. OBJECTIVE The aim was to determine the regulation of retinoid uptake and RA action in primary stromal cells from endometrium (n = 10) or endometriosis (n = 10). RESULTS Progesterone receptor was necessary for high STRA6 and CRABP2 expression in endometrial stromal cells. STRA6, which was responsible for labeled retinoid uptake, was strikingly lower in endometriotic cells compared to endometrial cells. CRABP2 knockdown in endometrial cells increased survival, and FABP5 knockdown in endometriotic cells decreased survival without altering the expression of downstream nuclear retinoic acid receptor α and peroxisome-proliferator-activated receptor β/δ. CONCLUSIONS In endometrial stromal cells, progesterone receptor up-regulates expression of STRA6 and CRABP2, which control retinol uptake and growth-suppressor actions of RA. In endometriotic stromal cells, decreased expression of these genes leads to decreased retinol uptake and dominant FABP5-mediated prosurvival activity.


The Journal of Clinical Endocrinology and Metabolism | 2008

Retinoic Acid (RA) Regulates 17β-Hydroxysteroid Dehydrogenase Type 2 Expression in Endometrium: Interaction of RA Receptors with Specificity Protein (SP) 1/SP3 for Estradiol Metabolism

You Hong Cheng; Ping Yin; Qing Xue; Bertan Yilmaz; Marcia I. Dawson; Serdar E. Bulun

CONTEXT The enzyme 17beta-hydroxysteroid dehydrogenase type 2 (HSD17B2) exerts a local antiestrogenic effect by metabolizing biologically active estradiol to inactive estrone in endometrial epithelial cells. Retinoic acid (RA) induces HSD17B2 expression, but the underlying mechanism is not known. OBJECTIVE Our objective was to elucidate the molecular mechanisms responsible for HSD17B2 expression in human endometrial cells. METHOD Human endometrial Ishikawa and RL95-2 cell lines were cultured in the presence or absence of RA to analyze endogenous HSD17B2 expression, transcription factor complex formation, and promoter activity. RESULTS RA induced HSD17B2 mRNA levels in a dose- and time-dependent manner in endometrial cells. The RA antagonist ANG11273 abolished RA-induced HSD17B2 expression. Small interfering RNA ablation of RA receptor (RAR)alpha or retinoid X receptor (RXR)alpha completely blocked RA-induced HSD17B2 gene expression. Analysis of serial deletion and site-directed mutants of the HSD17B2 promoter fused to a reporter gene indicated that RA induction requires a cis-regulatory sequence that binds the specificity protein (SP) class of transcription factors. Chromatin-immunoprecipitation-PCR and gel-shift assays showed that RARalpha/RXRalpha and SP1/SP3 interact with this HSD17B2 promoter sequence. Small interfering RNA ablation of SP1 and SP3 expression markedly decreased HSD17B2 basal expression and blocked RA-induced expression. Finally, immunoprecipitationimmunoblotting demonstrated RA-induced interactions between RARalpha/RXRalpha and SP1/SP3 in intact endometrial cells. CONCLUSIONS In endometrial epithelial cells, RA stimulates formation of a multimeric complex comprised of RARalpha/RXRalpha tethered to transcription factors SP1 and SP3 on the HSD17B2 promoter. Assembly of this transcriptional complex is necessary for RA induction of HSD17B2 expression and may be an important mechanism for local estradiol inactivation in the endometrium.


Biology of Reproduction | 2006

SP1 and SP3 Mediate Progesterone-Dependent Induction of the 17beta Hydroxysteroid Dehydrogenase Type 2 Gene in Human Endometrium

You Hong Cheng; Ayse Gonca Imir; Takashi Suzuki; Veysel Fenkci; Bertan Yilmaz; Hironobu Sasano; Serdar E. Bulun

Abstract The opposing actions of estrogen and progesterone during the menstrual cycle regulate the cyclical and predictable endometrial proliferation and differentiation that is required for implantation. Progesterone indirectly stimulates the expression of 17beta hydroxysteroid dehydrogenase type 2 (HSD17B2), which catalyzes the conversion of biologically potent estradiol to weakly estrogenic estrone in the endometrial epithelium. We previously demonstrated upregulation of the HSD17B2 gene in human endometrial epithelial cells by factors secreted from endometrial stromal cells in response to progesterone. We investigated the underlying mechanism by which these stroma-derived, progesterone-induced paracrine factors stimulate HSD17B2 expression. Here, we show that transcription factors SP1 and SP3 interact with specific motifs in HSD17B2 promoter to upregulate enzyme expression in human endometrial epithelial cell lines. Conditioned medium (CM) from progestin-treated stromal cells increased levels of SP1 and SP3 in endometrial epithelial cells and induced HSD17B2 mRNA expression. Mithramycin A, an inhibitor of SP1-DNA interaction, reduced epithelial HSD17B2 promoter activity in a dose-dependent manner. Serial deletion and site-directed mutants of the HSD17B2 promoter demonstrated that two overlapping SP1 motifs (nt −82/−65) are essential for induction of promoter activity by CM or overexpression of SP1/SP3. CM markedly enhanced, whereas anti-SP1/SP3 antibodies inhibited, binding of nuclear proteins to this region of the HSD17B2 promoter. In vivo, we demonstrated a significant spatiotemporal association between epithelial SP1/SP3 and HSD17B2 levels in human endometrial biopsies. Taken together, these data suggest that HSD17B2 expression in endometrial epithelial cells, and, therefore, estrogen inactivation, is regulated by SP1 and SP3, which are downstream targets of progesterone-dependent paracrine signals originating from endometrial stromal cells.

Collaboration


Dive into the You Hong Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Yin

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhihong Lin

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge