Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where You-Jie Li is active.

Publication


Featured researches published by You-Jie Li.


PLOS ONE | 2013

Alterations of Serum Levels of BDNF-Related miRNAs in Patients with Depression

You-Jie Li; Mei Xu; Zong-Hua Gao; Ya-Qi Wang; Zhen Yue; Yan-Xia Zhang; Xin-Xin Li; Can Zhang; Shu-Yang Xie; Ping-Yu Wang

Depression is a serious and potentially life-threatening mental disorder with unknown etiology. Emerging evidence shows that brain-derived neurotrophic factor (BDNF) and microRNAs (miRNAs) play critical roles in the etiology of depression. Here this study was aimed to identify and characterize the roles of BDNF and its putative regulatory miRNAs in depression. First, we identified that miR-182 may be a putative miRNA that regulates BDNF levels by bioinformatic studies, and characterized the effects of miR-182 on the BDNF levels using cell-based studies, side by side with miR-132 (a known miRNA that regulates BDNF expression). We showed that treatment of miR-132 and miR-182 respectively decreased the BDNF protein levels in a human neuronal cell model, supporting the regulatory roles of miR-132 and miR-182 on the BDNF expression. Furthermore, we explored the roles of miR-132 and miR-182 on the BDNF levels in depression using human subjects by assessing their serum levels. Compared with the healthy controls, patients with depression showed lower serum BDNF levels (via the enzyme-linked immunosorbent assays) and higher serum miR-132 and miR-182 levels (via the real-time PCR). Finally, the Pearson’s (or Spearman’s) correlation coefficient was calculated to study whether there was a relationship among the Self-Rating Depression Scale score, the serum BDNF levels, and serum BDNF-related miRNA levels. Our results revealed that there was a significant negative correlation between the SDS scores and the serum BDNF levels, and a positive correlation between the SDS scores and miR-132 levels. In addition, we found a reverse relationship between the serum BDNF levels and the miR-132/miR-182 levels in depression. Collectively, we provided evidence supporting that miR-182 is a putative BDNF-regulatory miRNA, and suggested that the serum BDNF and its related miRNAs may be utilized as important biomarkers in the diagnosis or as therapeutic targets of depression.


PLOS ONE | 2013

Low-dose paclitaxel ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway via miR-140 upregulation.

Congjie Wang; Xiaodong Song; You-Jie Li; Fang Han; Shu-Yan Gao; Xiaozhi Wang; Shu-Yang Xie; Changjun Lv

Abnormal TGF-β1/Smad3 activation plays an important role in the pathogenesis of pulmonary fibrosis, which can be prevented by paclitaxel (PTX). This study aimed to investigate an antifibrotic effect of the low-dose PTX (10 to 50 nM in vitro, and 0.6 mg/kg in vivo). PTX treatment resulted in phenotype reversion of epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) with increase of miR-140. PTX resulted in an amelioration of bleomycin (BLM)-induced pulmonary fibrosis in rats with reduction of the wet lung weight to body weight ratios and the collagen deposition. Our results further demonstrated that PTX inhibited the effect of TGF-β1 on regulating the expression of Smad3 and phosphorylated Smad3 (p-Smad3), and restored the levels of E-cadherin, vimentin and α-SMA. Moreover, lower miR-140 levels were found in idiopathic pulmonary fibrosis (IPF) patients, TGF-β1-treated AECs and BLM-instilled rat lungs. Through decreasing Smad3/p-Smad3 expression and upregulating miR-140, PTX treatment could significantly reverse the EMT of AECs and prevent pulmonary fibrosis of rats. The action of PTX to ameliorate TGF-β1-induced EMT was promoted by miR-140, which increased E-cadherin levels and reduced the expression of vimentin, Smad3 and p-Smad3. Collectively, our results demonstrate that low-dose PTX prevents pulmonary fibrosis by suppressing the TGF-β1/Smad3 pathway via upregulating miR-140.


Oncology Reports | 2014

miR-511 induces the apoptosis of radioresistant lung adenocarcinoma cells by triggering BAX

Han-Han Zhang; Min Pang; Wei Dong; Jia-Xuan Xin; You-Jie Li; Zicheng Zhang; Liang Yu; Ping-Yu Wang; Baosheng Li; Shu-Yang Xie

Radioresistance is one of the main reasons for the failure of radiotherapy in lung cancer. The present study was conducted to identify the role of miR-511 in suppressing the growth of radioresistant lung adenocarcinoma cells. First, a radioresistant A549/R cell line was generated after prolonged exposure to X-rays for 68 Gy (2 Gy/day, 5 days/week) and the radioresistance was confirmed by wound healing assay. Next, oncogenic TRIB2 was found to be upregulated in the radioresistant A549/R cells when compared to that of the control A549 cells as determined by western blot analysis. As the upstream miRNA, quantitative PCR showed that miR-511 expression was decreased in the radioresistant A549/R cells. Overexpression of miR-511 in miR-511-transfected A549/R cells inhibited cell growth and increased the number of apoptotic cells when compared with the control treatment. Flow cytometric analysis further demonstrated that the growth suppressive effect of miR-511 on A549/R cells was mediated by regulation of the cell cycle, most likely due to a block in the G1-S transition. Finally, our results showed that the expression of BAX was lower in the radioresistant A549/R cells when compared with that in the control A549 cells. After downregulation of TRIB2 by miR-511 treatment, BAX expression was obviously increased in the miR-511-transfected apoptotic A549/R cells when compared to that in the NC-treated or control cultures. In summary, our results revealed that miR-511 regulates the growth of radioresistant A549/R cells by increasing BAX expression through TRIB2, which suggests that miR-511 may be a potential therapeutic molecule for the treatment of radioresistant lung adenocarcinoma.


Journal of Cellular and Molecular Medicine | 2016

High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98.

Xin-Xin Li; Yue-Mei Liu; You-Jie Li; Ning Xie; Yun-Fei Yan; Yong-Liang Chi; Ling Zhou; Shu-Yang Xie; Ping-Yu Wang

Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin‐D2‐regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p‐RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2‐3′ untranslated region is targeted by miR‐98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p‐RB1 expression was regulated by miR‐98. The results indicated that miR‐98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR‐98 might be related to regulation of Bcl‐2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR‐98 decreased in 4.5 g/l glucose‐treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR‐98 significantly decreased in aortas of established streptozotocin (STZ)‐induced diabetic rat model compared with that in control rats; but cyclin D2 and p‐RB1 levels remarkably increased in aortas of STZ‐induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up‐regulation and miR‐98 down‐regulation in the RAOECs. By regulating cyclin D2, miR‐98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM.


Cancer Biology & Therapy | 2017

MiR-320a effectively suppresses lung adenocarcinoma cell proliferation and metastasis by regulating STAT3 signals.

Qing Lv; Jin-Xia Hu; You-Jie Li; Ning Xie; Dan Dan Song; Wei Zhao; Yun-Fei Yan; Baosheng Li; Ping-Yu Wang; Shu-Yang Xie

ABSTRACT MicroRNAs play important roles in tumorigenesis of various types of cancers. MiR-320a can inhibits cell proliferation of some cancers, but the biologic roles of miR-320a in lung cancer need to be further studied. Here, we investigated the roles of miR-320a in suppressing the proliferation of lung adenocarcinoma cells. MiR-320a treatment was found to effectively suppress LTEP-a-2 and A549 cell proliferation, and induce more apoptotic cells with irradiation treatment compared with control treatment. Our results also showed that miR-320a, as a novel miRNA, directly regulated signal transducer and activator of transcription 3 (STAT3) and its signals, such as Bcl−2, Bax, and Caspase 3. The siRNA-inhibited STAT3 levels further proved its roles in regulating STAT3 signals. Moreover, miR-320a treatment effectively suppressed cancer cell growth in mice xenografts compared with controls, and significantly inhibited cell migration in vitro and in vivo. Our findings collectively demonstrated that miR-320a, by directly regulating STAT3 signals, not only suppressed cell proliferation and metastasis, but also enhanced irradiation-induced apoptosis of adenocarcinomia cells.


Journal of Cellular and Molecular Medicine | 2015

Sulindac has strong antifibrotic effects by suppressing STAT3-related miR-21.

Xue Zhou; You-Jie Li; Shu-Yan Gao; Xiaozhi Wang; Ping-Yu Wang; Yun-Fei Yan; Shu-Yang Xie; Changjun Lv

Pulmonary fibrosis (PF) is a disease with an unknown cause and a poor prognosis. In this study, we aimed to explore the pathogenesis of PF and the mechanism of sulindac in attenuating bleomycin (BLM)‐induced PF. The rat PF model was induced by BLM and verified through histological studies and hydroxyproline assay. The severity of BLM‐induced PF in rats and other effects, such as the extent of the wet lung to bw ratios, thickening of alveolar interval or collagen deposition, was obviously ameliorated in sulindac‐treated rat lungs compared with BLM‐induced lungs. Sulindac also reversed the epithelial mesenchymal transition (EMT) and inhibited the PF process by restoring the levels of E‐cadherin and α‐smooth muscle actin (SMA) in A549 cells. Our results further demonstrated that the above effects of sulindac might be related to regulating of interferon gamma (IFN‐γ) expression, which further affects signal transducers and activators of transcription 3 (STAT3) and phosphorylated STAT3 (p‐STAT3) levels. Moreover, higher miR‐21 levels with the decreased E‐cadherin and increased α‐SMA expressions were found in transforming growth factor‐β1‐treated A549 cells, which can be reversed by sulindac. Collectively, our results demonstrate that by decreasing IFN‐γ‐induced STAT3/p‐STAT3 expression to down‐regulate miR‐21, sulindac could significantly reverse EMT in A549 cells and prevent BLM‐induced PF.


Molecular and Cellular Biochemistry | 2012

Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat

Shu-Yang Xie; Ning Xie; You-Jie Li; Ping-Yu Wang; Chao Zhang; Qiang Li; Xiaolin Liu; Jingti Deng; Can Zhang; Changjun Lv

To characterize the roles of tribble 2 (TRB2) and its targeted microRNAs (miRNAs) in the pathogenesis of the early vascular injury involved in diabetic-2 rat. Goto-Kakizaki (GK) rat and Wistar rat were used as the animal models. Each eligible rat was killed and the rat aorta tissues were analyzed by immunohistochemistry, ELISA, reverse transcription-polymerase chain reaction (RT-PCR), and real-time PCR detection. GFP expression in RAOEC cells (rat vascular aortic endothelial cell)were detected by flow cytometry and fluorescent microscope. TRB2 gene expression was increased in endothelia cell and the adventitia of Goto-Kakizaki (GK) rat compared with Wistar rat. Next, studies using RAOEC cells showed that the TRB2 expression was inhibited by the treatment of miR-98. We further showed that the expression of miR-98 was significantly decreased in the adventitia and endomembrane at different degrees in GK rats compared with control. Finally, we validated the changes in TRB2 by studying one of the TRB2’s substrates, Akt, in animal models. We expected a corresponding change in the levels of phosphorylated Akt. Indeed, our results showed that the phosphorylation of Akt at Thr 308 in the endothelial cells and phosphorylation of Akt at Ser 473 in adventitia was decreased in GK rats, compared with Wistar control. TRB2 plays important roles in the pathogenesis of diabetic-2 large artery complications at early stage, and these effects may be modulated by miR-98. Thus, targeting TRB2 and miR-98 could be considered as novel therapeutic strategies for the early large artery deficits in diabetic-2.


Cell Death and Disease | 2016

Smad3-related miRNAs regulated oncogenic TRIB2 promoter activity to effectively suppress lung adenocarcinoma growth.

Yan-Xia Zhang; Yun-Fei Yan; Yue-Mei Liu; You-Jie Li; Han-Han Zhang; Min Pang; Jin-Xia Hu; Wei Zhao; Ning Xie; Ling Zhou; Ping-Yu Wang; Shu-Yang Xie

MicroRNAs (miRNAs) and Smad3, as key transcription factors in transforming growth factor-β1 (TGF-β1) signaling, help regulate various physiological and pathological processes. We investigated the roles of Smad3-regulated miRNAs with respect to lung adenocarcinoma cell apoptosis, proliferation, and metastasis. We observed that Smad3 and phospho-SMAD3 (p-Smad3) were decreased in miR-206- (or miR-140)-treated cells and there might be a feedback loop between miR-206 (or miR-140) and TGF-β1 expression. Smad3-related miRNAs affected tribbles homolog 2 (TRIB2) expression by regulating trib2 promoter activity through the CAGACA box. MiR-206 and miR-140 inhibited lung adenocarcinoma cell proliferation in vitro and in vivo by suppressing p-Smad3/Smad3 and TRIB2. Moreover, lung adenocarcinoma data supported a suppressive role for miR-206/miR-140 and an oncogenic role for TRIB2—patients with higher TRIB2 levels had poorer survival. In summary, miR-206 and miR-140, as tumor suppressors, induced lung adenocarcinoma cell death and inhibited cell proliferation by modifying oncogenic TRIB2 promoter activity through p-Smad3. MiR-206 and miR-140 also suppressed lung adenocarcinoma cell metastasis in vitro and in vivo by regulating EMT-related factors.


International Journal of Molecular Medicine | 2016

Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1

Ying-Jie Yi; Xiu-Hong Jia; Jian-Yong Wang; You-Jie Li; Hong Wang; Xie Sy

Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.


Genetics and Molecular Biology | 2010

Familial congenital cyanosis caused by Hb-M Yantai (α-76 GAC → TAC, Asp → Tyr)

Yanbo Sun; Ping-Yu Wang; You-Jie Li; Fei Jiao; Zunling Li; Ying Ma; Wei Li; Shu-Yang Xie

Methemoglobin (Hb-M) is a rare hemoglobinopathy in China. We hereby report on a family living in Yantai, East China, with congenital cyanosis due to Hb-M mutation. The proband, a 65-year-old female, presented 63% oxygen saturation. Both Hb-M concentration and arterial oxygen saturation remained unchanged, even following intravenous treatment with methylene blue. There was also no change in blood-color (chocolate-brown) after adding 0.1% KCN. A fast-moving band (Hb-X) in hemolysates was found by cellulose acetate electrophoresis, the Hb-X/Hb-A ratio exceeding 10%. GT transition at 131nt of exon 2, although present in one of the α2 -globin alleles, was not found in α1 -globin alleles as a whole. This mutation leads to the aspartic acid to tyrosine substitution (Asp76Tyr). In this family, the novel mutation in the α2 -globin gene resulted in a rare form of congenital cyanosis due to Hb-M. This hemoglobin was named Hb-M Yantai .

Collaboration


Dive into the You-Jie Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Jiao

Binzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge