Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where You-Sun Kim is active.

Publication


Featured researches published by You-Sun Kim.


Journal of Immunology | 2007

Airway Exposure Levels of Lipopolysaccharide Determine Type 1 versus Type 2 Experimental Asthma

Yoon Keun Kim; Sun Young Oh; Seong Gyu Jeon; Heung-Woo Park; Soo Yeon Lee; Eun Young Chun; Bo-Ram Bang; Hyun Seung Lee; Min Hee Oh; You-Sun Kim; Jong Hoon Kim; Yong Song Gho; Sang Heon Cho; Kyung Up Min; You Young Kim; Zhou Zhu

Allergic asthma is characterized by airway inflammation initiated by adaptive immune responses to aeroallergens. Recent data suggest that severe asthma may be a different form of asthma rather than an increase in asthma symptoms and that innate immune responses to LPS can modulate adaptive immune responses to allergens. In this study, we evaluated the hypothesis that airway exposure to different doses of LPS induces different form of asthma. Our study showed that neutrophilic inflammation and IFN-γ expression were higher in induced sputum from severe asthma patients than from mild to moderate asthmatics. Animal experiments indicated that allergen sensitization with low-dose LPS (0.1 μg) induced type 2 asthma phenotypes, i.e., airway hyperresponsiveness, eosinophilic inflammation, and allergen-specific IgE up-regulation. In contrast, allergen sensitization with high-dose LPS (10 μg) induced asthma phenotypes, i.e., airway hyperresponsiveness and noneosinophilic inflammation that were not developed in IFN-γ-deficient mice, but unaffected in the absence of IL-4. During the allergen sensitization period, TNF-α expression was found to be enhanced by both low- and high-dose LPS, whereas IL-12 expression was only enhanced by high-dose LPS. Interestingly, the asthma phenotypes induced by low-dose LPS, but not by high-dose LPS, were completely inhibited in TNF-α receptor-deficient mice, whereas the asthma phenotypes induced by high-dose LPS were abolished in the homozygous null mutation of the STAT4 gene. These findings suggest that airway exposure levels of LPS induces different forms of asthma that are type 1 and type 2 asthma phenotypes by high and low LPS levels, respectively.


PLOS ONE | 2010

Outer Membrane Vesicles Derived from Escherichia coli Induce Systemic Inflammatory Response Syndrome

Kyong-Su Park; Kyoung Ho Choi; You-Sun Kim; Bok Sil Hong; Oh Youn Kim; Ji Hyun Kim; Chang Min Yoon; Gou Young Koh; Yoon-Keun Kim; Yong Song Gho

Sepsis, characterized by a systemic inflammatory state that is usually related to Gram-negative bacterial infection, is a leading cause of death worldwide. Although the annual incidence of sepsis is still rising, the exact cause of Gram-negative bacteria-associated sepsis is not clear. Outer membrane vesicles (OMVs), constitutively secreted from Gram-negative bacteria, are nano-sized spherical bilayered proteolipids. Using a mouse model, we showed that intraperitoneal injection of OMVs derived from intestinal Escherichia coli induced lethality. Furthermore, OMVs induced host responses which resemble a clinically relevant condition like sepsis that was characterized by piloerection, eye exudates, hypothermia, tachypnea, leukopenia, disseminated intravascular coagulation, dysfunction of the lungs, hypotension, and systemic induction of tumor necrosis factor-α and interleukin-6. Our study revealed a previously unidentified causative microbial signal in the pathogenesis of sepsis, suggesting OMVs as a new therapeutic target to prevent and/or treat severe sepsis caused by Gram-negative bacterial infection.


Journal of Immunology | 2009

Vascular endothelial growth factor is a key mediator in the development of T cell priming and its polarization to type 1 and type 17 T helper cells in the airways.

You-Sun Kim; Sung-Wook Hong; Jun-Pyo Choi; Tae-Seop Shin; Hyung-Geun Moon; Eun-Jung Choi; Seong Gyu Jeon; Sun-Young Oh; Yong Song Gho; Zhou Zhu; Yoon-Keun Kim

Chronic inflammatory airway diseases including asthma are characterized by immune dysfunction to inhaled allergens. Our previous studies demonstrated that T cell priming to inhaled allergens requires LPS, which is ubiquitously present in household dust allergens. In this study, we evaluated the role of vascular endothelial growth factor (VEGF) in the development of T cell priming and its polarization to Th1 or Th17 cells when exposed to LPS-contaminated allergens. An asthma mouse model was induced by airway sensitization with LPS-contaminated allergens and then challenged with allergens alone. Therapeutic intervention was performed during allergen sensitization. The present study showed that lung inflammation induced by sensitization with LPS-contaminated allergens was decreased in mice with homozygous disruption of the IL-17 gene; in addition, allergen-specific Th17 immune response was abolished in IL-6 knockout mice. Meanwhile, in vivo production of VEGF was up-regulated by airway exposure of LPS. In addition, airway sensitization of allergen plus recombinant VEGF induced both type 1 and type 17 Th cell (Th1 and Th17) responses. Th1 and Th17 responses induced by airway sensitization with LPS-contaminated allergens were blocked by treatment with a pan-VEGF receptor (VEGFR; VEGFR-1 plus VEGFR-2) inhibitor during sensitization. These effects were accompanied by inhibition of the production of Th1 and Th17 polarizing cytokines, IL-12p70 and IL-6, respectively. These findings indicate that VEGF produced by LPS plays a key role in activation of naive T cells and subsequent polarization to Th1 and Th17 cells.


Molecules and Cells | 2012

Activation of Rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification.

Sichul Lee; You-Sun Kim; Yoon-Keun Kim; Jan K. Schjoerring; Gynheung An

Because micronutrients in human diets ultimately come from plant sources, malnutrition of essential minerals is a significant public health concern. By increasing the expression of nicotianamine synthase (NAS), we fortified the level of bioavailable iron in rice seeds. Activation of iron deficiency-inducible OsNAS2 resulted in a rise in Fe content (3.0-fold) in mature seeds. Its ectopic expression also increased that content. Enhanced expression led to higher tolerance of Fe deficiency and better growth under elevated pH. Mice fed with OsNAS2-D1 seeds recovered more rapidly from anemia, indicating that bioavailable Fe contents were improved by this increase in OsNAS2 expression.


Journal of Immunology | 2010

The Agonists of Formyl Peptide Receptors Prevent Development of Severe Sepsis after Microbial Infection

Sang Doo Kim; Yoon-Keun Kim; Ha Young Lee; You-Sun Kim; Seong Gyu Jeon; Suk-Hwan Baek; Dong-Keun Song; Sung Ho Ryu; Yoe-Sik Bae

Severe sepsis, a principal cause of death in intensive care units, occurs when host immune defenses fail to combat invading microbes. In this paper, we report that the administration of peptide agonists of formyl peptide receptors, including Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), protected against death by enhanced bactericidal activity and inhibition of vital organ inflammation and immune cell apoptosis in a cecal ligation and puncture (CLP) sepsis mouse model. The administration of WKYMVm also enhanced the production of type 1 (IFN-γ and IL-12) and type 17 (IL-17 and TGF-β) cytokines in CLP mice. In contrast, the administration of WKYMVm inhibited the production of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in the CLP mice. The therapeutic and bactericidal effects of WKYMVm were partly reversed in IFN-γ–deficient mice, whereas target organ inflammation was not. Meanwhile, the therapeutic and anti-inflammatory effects of WKYMVm were partly reversed in IL-17–deficient mice. In addition, the administration of WKYMVm also enhanced type 1 and type 17 Th cell responses in mice sensitized with LPS plus Ags. These results suggest that the agonists of formyl peptide receptors effectively prevent development of severe sepsis following microbial infection partly via augmentation of type 1 and type 17 immune responses.


Allergy, Asthma and Immunology Research | 2013

Immunopathogenesis of allergic asthma: more than the Th2 hypothesis.

You Me Kim; You-Sun Kim; Seong Gyu Jeon; Yoon Keun Kim

Asthma is a chronic obstructive airway disease that involves inflammation of the respiratory tract. Biological contaminants in indoor air can induce innate and adaptive immune responses and inflammation, resulting in asthma pathology. Epidemiologic surveys indicate that the prevalence of asthma is higher in developed countries than in developing countries. The prevalence of asthma in Korea has increased during the last several decades. This increase may be related to changes in housing styles, which result in increased levels of indoor biological contaminants, such as house dust mite-derived allergens and bacterial products such as endotoxin. Different types of inflammation are observed in those suffering from mild-to-moderate asthma compared to those experiencing severe asthma, involving markedly different patterns of inflammatory cells and mediators. As described in this review, these inflammatory profiles are largely determined by the involvement of different T helper cell subsets, which orchestrate the recruitment and activation of inflammatory cells. It is becoming clear that T helper cells other than Th2 cells are involved in the pathogenesis of asthma; specifically, both Th1 and Th17 cells are crucial for the development of neutrophilic inflammation in the airways, which is related to corticosteroid resistance. Development of therapeutics that suppress these immune and inflammatory cells may provide useful asthma treatments in the future.


Journal of Immunology | 2010

Distinct Roles of Vascular Endothelial Growth Factor Receptor-1– and Receptor-2–Mediated Signaling in T Cell Priming and Th17 Polarization to Lipopolysaccharide-Containing Allergens in the Lung

You-Sun Kim; Seng-Jin Choi; You-Me Tae; Byung-Jae Lee; Seong Gyu Jeon; Sun-Young Oh; Yong Song Gho; Zhou Zhu; Yoon-Keun Kim

Vascular endothelial growth factor (VEGF) is a key mediator in the development of airway immune dysfunction to inhaled allergens. However, the exact role of its receptors-mediated signaling is controversial. In this study, we evaluated the role of VEGF receptor (VEGFR)-1– and VEGFR-2–mediated signaling in T cell priming and polarization in the context of inhalation of LPS-containing allergens. A murine asthma model of mixed Th1 and Th17 cell responses was generated using intranasal sensitization with LPS-containing allergens. Pharmacologic intervention was performed during sensitization. In vivo production of VEGF and Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) were upregulated by airway exposure to LPS. Pharmacological intervention with a VEGFR-2–neutralizing Ab (anti-Flk1 mAb) abolished the production of IL-6 (but not IL-12p70) and the subsequent development of allergen-specific Th17 cell response. On the other hand, blocking VEGFR-1 signaling with a VEGFR-1 antagonist (anti-Flt1 hexapeptide) did not affect the production of IL-12p70 and IL-6. However, blocking VEGFR-1 signaling resulted in T cell tolerance rather than priming, mainly by inhibiting the maturation of lung dendritic cells, and their migration into lung-draining lymph nodes. These results suggest that T cell priming to LPS-containing allergens depends on VEGFR-1–mediated signaling, and the subsequent Th17 polarization depends on VEGFR-2 signaling.


Mathematical Biosciences and Engineering | 2013

Regulation of Th1/Th2 cells in asthma development: A mathematical model

Yangjin Kim; Seongwon Lee; You-Sun Kim; Sean Lawler; Yong Song Gho; Yoon-Keun Kim; Hyung Ju Hwang

Airway exposure levels of lipopolysaccharide (LPS) determine type I versus type II helper T cell induced experimental asthma. While high LPS levels induce Th1-dominant responses, low LPS levels derive Th2 cell induced asthma. The present paper develops a mathematical model of asthma development which focuses on the relative balance of Th1 and Th2 cell induced asthma. In the present work we represent the complex network of interactions between cells and molecules by a mathematical model. The model describes the behaviors of cells (Th0, Th1, Th2 and macrophages) and regulatory molecules (IFN- γ, IL-4, IL-12, TNF-α) in response to high, intermediate, and low levels of LPS. The simulations show how variations in the levels of injected LPS affect the development of Th1 or Th2 cell responses through differential cytokine induction. The model also predicts the coexistence of these two types of response under certain biochemical and biomechanical conditions in the microenvironment.


Experimental and Molecular Medicine | 2010

IL-12-STAT4-IFN-γ axis is a key downstream pathway in the development of IL-13-mediated asthma phenotypes in a Th2 type asthma model

You-Sun Kim; Seng Jin Choi; Jun Pyo Choi; Seong Gyu Jeon; Sun Young Oh; Byung Jae Lee; Yong Song Gho; Chun Geun Lee; Zhou Zhu; Jack A. Elias; Yoon Keun Kim

IL-4 and IL-13 are closely related cytokines that are produced by Th2 cells. However, IL-4 and IL-13 have different effects on the development of asthma phenotypes. Here, we evaluated downstream molecular mechanisms involved in the development of Th2 type asthma phenotypes. A murine model of Th2 asthma was used that involved intraperitoneal sensitization with an allergen (ovalbumin) plus alum and then challenge with ovalbumin alone. Asthma phenotypes, including airway-hyperresponsiveness (AHR), lung inflammation, and immunologic parameters were evaluated after allergen challenge in mice deficient in candidate genes. The present study showed that methacholine AHR and lung inflammation developed in allergen-challenged IL-4-deficient mice but not in allergen-challenged IL-13-deficient mice. In addition, the production of OVA-specific IgG2a and IFN-γ-inducible protein (IP)-10 was also impaired in the absence of IL-13, but not of IL-4. Lung-targeted IFN-γ over-expression in the airways enhanced methacholine AHR and non-eosinophilic inflammation; in addition, these asthma phenotypes were impaired in allergen-challenged IFN-γ-deficient mice. Moreover, AHR, non-eosinophilic inflammation, and IFN-γ expression were impaired in allergen-challenged IL-12Rβ2- and STAT4-deficient mice; however, AHR and non-eosinophilic inflammation were not impaired in allergen-challenged IL-4Rα-deficient mice, and these phenomena were accompanied by the enhanced expression of IL-12 and IFN-γ. The present data suggest that IL-13-mediated asthma phenotypes, such as AHR and non-eosinophilic inflammation, in the Th2 type asthma are dependent on the IL-12-STAT4-IFN-γ axis, and that these asthma phenotypes are independent of IL-4Ralpha-mediated signaling.


Stem Cells and Development | 2015

The Therapeutic Effects of Human Mesenchymal Stem Cells Primed with Sphingosine-1 Phosphate on Pulmonary Artery Hypertension

Hyunsook Kang; Kang-Hyun Kim; Jisun Lim; You-Sun Kim; Jinbeom Heo; Jongjin Choi; Jaeho Jeong; YongHwan Kim; Seong Who Kim; Yeon-Mok Oh; Myung-Soo Choo; Jaekyoung Son; Su Jung Kim; Hyun Ju Yoo; Wonil Oh; Soo Jin Choi; Sei Won Lee

Stem cell (SC) therapy has become a potential treatment modality for pulmonary artery hypertension (PAH), but the efficacy of human SC and priming effects have not yet been established. The mobilization and homing of hematopoietic stem cells (HSCs) are modulated by priming factors that include a bioactive lipid, sphingosine-1-phosphate (S1P), which stimulates CXCR4 receptor kinase signaling. Here, we show that priming human mesenchymal stem cells (MSCs) with S1P enhances their therapeutic efficacy in PAH. Human MSCs, similar to HSCs, showed stronger chemoattraction to S1P in transwell assays. Concomitantly, MSCs treated with 0.2 μM S1P showed increased phosphorylation of both MAPKp42/44 and AKT protein compared with nonprimed MSCs. Furthermore, S1P-primed MSCs potentiated colony forming unit-fibroblast, anti-inflammatory, and angiogenic activities of MSCs in culture. In a PAH animal model induced by subcutaneously injected monocrotaline, administration of human cord blood-derived MSCs (hCB-MSCs) or S1P-primed cells significantly attenuated the elevated right ventricular systolic pressure. Notably, S1P-primed CB-MSCs, but not unprimed hCB-MSCs, also elicited a significant reduction in the right ventricular weight ratio and pulmonary vascular wall thickness. S1P-primed MSCs enhanced the expression of several genes responsible for stem cell trafficking and angiogenesis, increasing the density of blood vessels in the damaged lungs. Thus, this study demonstrates that human MSCs have potential utility for the treatment of PAH, and that S1P priming increases the effects of SC therapy by enhancing cardiac and vascular remodeling. By optimizing this protocol in future studies, SC therapy might form a basis for clinical trials to treat human PAH.

Collaboration


Dive into the You-Sun Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seong Gyu Jeon

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yong Song Gho

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhou Zhu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yoon Keun Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jun-Pyo Choi

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sun-Young Oh

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge