Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youbei Qiao is active.

Publication


Featured researches published by Youbei Qiao.


European Journal of Pharmaceutical Sciences | 2011

Folate-decorated maleilated pullulan-doxorubicin conjugate for active tumor-targeted drug delivery.

Haitao Zhang; Fei Li; Jun Yi; Chunhu Gu; Li Fan; Youbei Qiao; Yangchun Tao; Chong Cheng; Hong Wu

A novel folate-decorated maleilated pullulan-doxorubicin conjugate (abbreviated as FA-MP-DOX) for active tumor targeting was set up. The structure of this conjugate was confirmed by (1)H NMR analysis. Furthermore, the conjugation efficiency, drug release property and stability of the conjugate were determined. The cellular uptake and cytotoxicity were assessed by using ovarian carcinoma A2780 cells as in vitro cell model. In vitro DOX release from FA-MP-DOX conjugate occurred at a faster rate at acidic pH compared to neutral pH (7.4). After 30 h of incubation at pH 2.5, 5.0 and 7.4 the released free DOX was about 68.71%, 50.08% and 26%, respectively. Based on the IC(50) values, the conjugate was found more effective with ovarian carcinoma A2780 cells than the parent drug after 48 h culture. These results suggested that FA-MP-DOX conjugate could be a promising doxorubicin carrier for its targeted and intracellular delivery.


Journal of Pharmaceutical and Biomedical Analysis | 2014

A strategy for rapid analysis of xenobiotic metabolome of Sini decoction in vivo using ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass spectrometry combined with pattern recognition approach

Guangguo Tan; Min Liu; Xin Dong; Si Wu; Li Fan; Youbei Qiao; Yifeng Chai; Hong Wu

Xenobiotic metabolome identificatioqn of Chinese herbal prescription in biological systems is a very challenging task. In the present work, a reliable strategy based on the combination of ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass spectrometry (UHPLC-ESI-Q-TOFMS) and pattern recognition approach such as principal component analysis (PCA) and partial least squared discriminant analysis (PLS-DA) was proposed to rapidly discover and analyze the xenobiotic metabolome from Sini decoction (SND). Using the S- and VIP-plots of PLS-DA, 96 and 112 interest ions from positive and negative ion datasets were extracted as SND metabolome in rat urine following oral administration of SND. Among them, 53 absorbed prototype components of SND and 49 metabolites were identified, which provided essential data for further studying the relationship between the chemical components and pharmacological activity of SND. Our results indicated that hydrolysis and demethylation were the major metabolic pathways of diterpenoid alkaloids, while glucuronidation, sulfation, hydrolysis, reduction, demethylation, and hydroxylation were the main metabolic pathways of flavonoids, and hydrolysis was the metabolic pathway of gingerol-related compounds. No saponin-related metabolites were detected.


Theranostics | 2017

Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity

Qing Zhou; Yilin Hou; Li Zhang; Jianlin Wang; Youbei Qiao; Songyan Guo; Li Fan; Tiehong Yang; Lin Zhu; Hong Wu

Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity.


Polymer Chemistry | 2015

Multifunctional pH-sensitive micelles for tumor-specific uptake and cellular delivery

Tiehong Yang; Fei Li; Haitao Zhang; Li Fan; Youbei Qiao; Guangguo Tan; Haifei Zhang; Hong Wu

The distinct ability of cell-penetrating peptides (CPPs) has led to the development of novel drug delivery methods in human cells for therapeutic purposes. The lack of specific selectivity is a main obstacle to the widespread use of CPPs. A novel delivery method based on acid-sensitive micelles used for the introduction and protection of TAT was developed. Doxorubicin-TAT conjugate (Dox-TAT) was loaded in the luteinizing hormone-releasing hormone modified poly (ethylene glycol)-poly (L-histidine)-doxorubicin (LHRH-PEG-PHIS-Dox) micelle. Dox was chemically conjugated to the polymer backbone not only to improve the stability of micelles, but also to increase the drug loading efficiency of the micelle. These micelles could dissociate the responding tumor extracellular pHe and release Dox-TAT to pass directly through the cell membrane to the cytosol of the multidrug resistant cancer cells. The undissociated micelles could also be actively internalized into the cells by receptor-mediated endocytosis, resulting in high cytotoxicity. LHRH-PEG-PHIS-Dox/Dox-TAT showed the highest antitumor effects among the four treatment groups in vitro and vivo and showed no remarkable effect on the body weight compared to the control. This skillfully designed system combined the double functions of targeted delivery and TAT-mediated efficient entry, which could increase the antitumor activity, even in drug resistant tumor cells.


PLOS ONE | 2013

GNPs-CS/KGM as hemostatic first aid wound dressing with antibiotic effect: in vitro and in vivo study.

Li Fan; Chong Cheng; Youbei Qiao; Fei Li; Wei Li; Hong Wu; Bo Ren

Ideal wound dressing materials should create a good healing environment, with immediate hemostatic effects and antimicrobial activity. In this study, chitosan/konjac glucomannan (CS/KGM) films embedded with gentamicin-loaded poly(dex-GMA/AAc) nanoparticles (giving GNP-CS/KGM films) were prepared as novel wound dressings. The results revealed that the modified CS/KGM films could be used as effective wound dressings and had significant hemostatic effects. With their microporous structure, the films could effectively absorb water from blood and trap blood cells. The gentamicinloaded poly(dex-GMA/AAc) nanoparticles (GNPs) also further promoted blood clotting, with their favorable water uptake capacity. Thus, the GNP-CS/KGM films had wound healing and synergistic effects that helped to stop bleeding from injuries, and also showed good antibiotic abilities by addition of gentamicin to the NPs. These GNPCS/KGM films can be considered as promising novel biodegradable and biocompatible wound dressings with hemostatic capabilities and antibiotic effects for treatment of external bleeding injuries.


Journal of Experimental & Clinical Cancer Research | 2015

Dual loading miR-218 mimics and Temozolomide using AuCOOH@FA-CS drug delivery system: promising targeted anti-tumor drug delivery system with sequential release functions

Li Fan; Qian Yang; Jiali Tan; Youbei Qiao; Qiaofeng Wang; Jingya He; Hong Wu; Yongsheng Zhang

BackgroundDual loading drug delivery system with tumor targeting efficacy and sequential release function provides a promising platform for anticancer drug delivery. Herein, we established a novel AuCOOH@FACS nanogel system for co-delivery miR-218 mimics (as bio-drug) and Temozolomide(as chemo-drug).MethodsDLS and TEM were employed to determine the characteristics of particles and nanogels. The cell viability was calculated for study synergistic effect of both drugs coadministration and in nanogel forms. The amounts of Au uptake were measured by ICP-MS in cell and tumors to quantify the targeting drug delivery efficacy. Tumor weight and mice weight were investigated to study the targeting antitumor efficacy of nanogel system.ResultsThe results revealed that using AuCOOH@FACS nanogel as delivery vehicles, drugs could be targeting delivery to tumor site, the intracellular uptake is enhanced to a greater extent, and significant antitumor efficacy is fold increase compared with free drug administration group, without noticeable system cytotoxicity.ConclusionsThis system offers an efficient approach to cancer therapy and holds significant potential to improve the treatment of cancer in the future.


International Journal of Nanomedicine | 2015

Preparation of poly(β-L-malic acid)-based charge-conversional nanoconjugates for tumor-specific uptake and cellular delivery

Qing Zhou; Tiehong Yang; Youbei Qiao; Songyan Guo; Lin Zhu; Hong Wu

In this study, a multifunctional poly(β-L-malic acid)-based nanoconjugate with a pH-dependent charge conversional characteristic was developed for tumor-specific drug delivery. The short branched polyethylenimine-modified poly(β-L-malic acid) (PEPM) was first synthesized. Then, the fragment HAb18 F(ab′)2 and 2,3-dimethylmaleic anhydride were covalently attached to the PEPM to form the nanoconjugate, HDPEPM. In this nanoconjugate, the 2,3-dimethylmaleic anhydride, the shielding group, could shield the positive charge of the conjugate at pH 7.4, while it was selectively hydrolyzed in the tumor extracellular space (pH 6.8) to expose the previously-shielded positive charge. To study the anticancer activity, the anticancer drug, doxorubicin, was covalently attached to the nanoconjugate. The doxorubicin-loaded HDPEPM nanoconjugate was able to efficiently undergo a quick charge conversion from −11.62 mV to 9.04 mV in response to the tumor extracellular pH. The electrostatic interaction between the positively charged HDPEPM nanoconjugates and the negatively charged cell membrane significantly enhanced their cellular uptake, resulting in the enhanced anticancer activity. Also, the tumor targetability of the nanoconjugates could be further improved via the fragment HAb18 F(ab′)2 ligand–receptor-mediated tumor cell-specific endocytosis.


PLOS ONE | 2016

Preparation of Two Types of Polymeric Micelles Based on Poly(β-L-Malic Acid) for Antitumor Drug Delivery.

Tiehong Yang; Wei Li; Xiao Duan; Lin Zhu; Li Fan; Youbei Qiao; Hong Wu

Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer drugs. In this work, two types of CPT-conjugated polymers were synthesized based on poly(β-L-malic acid) (PMLA) derivatives. Folic acid (FA) was introduced into the polymers as tumor targeting group. The micellization behaviors of these polymers and antitumor activity of different self-assembled micelles were investigated. Results indicate that poly(ethylene glycol)-poly(β-L-malic acid)-campotothecin-I (PEG-PMLA-CPT-I, P1) is a grafted copolymer, and could form star micelles in aqueous solution with a diameter of about 97 nm, also that PEG-PMLA-CPT-II (P2) is an amphiphilic block copolymer, and could form crew cut micelles with a diameter of about 76 nm. Both P1 and P2 micelles could improve the cellular uptake of CPT, especially the FA-modified micelles, while P2 micelles showed higher stability, higher drug loading efficiency, smaller size, and slower drug release rate than that of P1 micelles. These results suggested that the P2 (crew cut) micelles possess better stability than that of the P1 (star) micelles and might be a potential drug delivery system for cancer therapy.


Journal of Biomedical Nanotechnology | 2018

Optimal Design of Novel Functionalized Nanoconjugates Based on Polymalic Acid for Efficient Tumor Endocytosis with Enhanced Anticancer Activity

Songyan Guo; Qing Zhou; Tiehong Yang; Youbei Qiao; Li Fan; Chaoli Wang; Hong Wu

To overcome the strong negative charge and improve the endocytosis of poly-β-malic acid (PMLA) as a drug carrier, a pH-sensitive nanoconjugate of PMLA/hyd-PEG5000/PEG2000-TAT/DOX (PHPTD) was developed. The trans activator of transcription (TAT) modified with polyethylene glycol2000(PEG2000) was conjugated with the PMLA backbone which improved the endocytosis of PMLA. PEG5000 was utilized to shield TAT by a pH-sensitive hydrazone (Hyd) bond. In order to decrease the potential risk of accelerated blood clearance (ABC) phenomenon by anti-PEG IgM, the minimal content of TAT for penetrating tumor cells and the optimal protecting layer density of PEG5000 were screened. The result showed that 0.3 mol% TAT was enough to efficiently improve cellular uptake of PMLA (30 kda). The cytotoxicity and the 1H-NMR results indicated that 3.6 mol% PEG5000-modified nanoconjugates could shield 0.3 mol% TAT. The antitumor effect in breast cancer cells (MDA-MB-231) in tumor-bearing BALB/C mice demonstrated that this nanoconjugates exhibits high therapeutic efficiency in artificial solid tumors and low toxicity to normal tissues. It is indicated that TAT could be hidden in the long chain of PEG5000 at a neutral pH, when arrival to the tumor extracellular microenvironment, PEG5000 was cleaved from the nanoconjugates through the hydrazone bond due to the acidic tumor environment. Then, TAT was exposed, allowing the nanoconjugates to be transported into tumor cells. Our findings provide important and detailed information regarding the optimal content of TAT and the shielded density of PEG5000 and reveal their abilities of tumor penetration and potential for the efficient drug carrier.


Polymer International | 2013

Self-assembled nanoparticles from folate-decorated maleilated pullulan–doxorubicin conjugate for improved drug delivery to cancer cells

Fei Li; Haitao Zhang; Chunhu Gu; Li Fan; Youbei Qiao; Yangchun Tao; Chong Cheng; Hong Wu; Jun Yi

Collaboration


Dive into the Youbei Qiao's collaboration.

Top Co-Authors

Avatar

Hong Wu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Li Fan

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Fei Li

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Tiehong Yang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Wei Li

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Chong Cheng

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Haitao Zhang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Qing Zhou

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yangchun Tao

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Chunhu Gu

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge