Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youbong Hyun is active.

Publication


Featured researches published by Youbong Hyun.


Nature Genetics | 2004

A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana

Hyoun-Joung Kim; Youbong Hyun; Jin-Young Park; Mi-Jin Park; Mi-Kyung Park; Myoung Duck Kim; Hye-Joung Kim; Mi Hyun Lee; Jihyun Moon; Ilha Lee; Jungmook Kim

Cold induces expression of a number of genes that encode proteins that enhance tolerance to freezing temperatures in plants. A cis-acting element responsive to cold and drought, the C-repeat/dehydration-responsive element (C/DRE), was identified in the Arabidopsis thaliana stress-inducible genes RD29A and COR15a and found in other cold-inducible genes in various plants. C/DRE-binding factor/DRE-binding protein (CBF/DREB) is an essential component of the cold-acclimation response, but the signaling pathways and networks are mostly unknown. Here we used targeted genetic approach to isolate A. thaliana mutants with altered cold-responsive gene expression (acg) and identify ACG1 as a negative regulator of the CBF/DREB pathway. acg1 flowered late and had elevated expression of FLOWERING LOCUS C (FLC), a repressor of flowering encoding a MADS-box protein. We showed that acg1 is a null allele of the autonomous pathway gene FVE. FVE encodes a homolog of the mammalian retinoblastoma-associated protein, a component of a histone deacetylase (HDAC) complex involved in transcriptional repression. We also showed that plants sense intermittent cold stress through FVE and delay flowering with increasing expression of FLC. Dual roles of FVE in regulating the flowering time and the cold response may have an evolutionary advantage for plants by increasing their survival rates.


Plant Journal | 2007

The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure

Jing Bo Jin; Yin Hua Jin; Ji-Young Lee; Kenji Miura; Chan Yul Yoo; Woe-Yeon Kim; Michael Van Oosten; Youbong Hyun; David E. Somers; Ilha Lee; Dae-Jin Yun; Ray A. Bressan; Paul M. Hasegawa

Loss-of-function siz1 mutations caused early flowering under short days. siz1 plants have elevated salicylic acid (SA) levels, which are restored to wild-type levels by expressing nahG, bacterial salicylate hydroxylase. The early flowering of siz1 was suppressed by expressing nahG, indicating that SIZ1 represses the transition to flowering mainly through suppressing SA-dependent floral promotion signaling under short days. Previous results have shown that exogenous SA treatment does not suppress late flowering of autonomous pathway mutants. However, the siz1 mutation accelerated flowering time of an autonomous pathway mutant, luminidependens, by reducing the expression of FLOWERING LOCUS C (FLC), a floral repressor. This result suggests that SIZ1 promotes FLC expression, possibly through an SA-independent pathway. Evidence indicates that SIZ1 is required for the full activation of FLC expression in the late-flowering FRIGIDA background. Interestingly, increased FLC expression and late flowering of an autonomous pathway mutant, flowering locus d (fld), was not suppressed by siz1, suggesting that SIZ1 promotes FLC expression by repressing FLD. Consistent with this, SIZ1 facilitates sumoylation of FLD that can be suppressed by mutations in three predicted sumoylation motifs in FLD (i.e. FLDK3R). Furthermore, expression of FLDK3R in fld protoplasts strongly reduced FLC transcription compared with expression of FLD, and this affect was linked to reduced acetylation of histone 4 in FLC chromatin. Taken together, the results suggest that SIZ1 is a floral repressor that not only represses the SA-dependent pathway, but also promotes FLC expression by repressing FLD activity through sumoylation, which is required for full FLC expression in a FRIGIDA background.


Developmental Cell | 2008

Cooperation and Functional Diversification of Two Closely Related Galactolipase Genes for Jasmonate Biosynthesis

Youbong Hyun; Sungwook Choi; Hyun-Ju Hwang; Jihyeon Yu; Sang-Jip Nam; Jaeyoung Ko; J. Park; Young Sam Seo; Eun Yu Kim; Stephen Beungtae Ryu; Woo Taek Kim; Yong-Hwan Lee; Heonjoong Kang; Ilha Lee

Jasmonic acid (JA) plays pivotal roles in diverse plant biological processes, including wound response. Chloroplast lipid hydrolysis is a critical step for JA biosynthesis, but the mechanism of this process remains elusive. We report here that DONGLE (DGL), a homolog of DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1), encodes a chloroplast-targeted lipase with strong galactolipase and weak phospholipase A(1) activity. DGL is expressed in the leaves and has a specific role in maintaining basal JA content under normal conditions, and this expression regulates vegetative growth and is required for a rapid JA burst after wounding. During wounding, DGL and DAD1 have partially redundant functions for JA production, but they show different induction kinetics, indicating temporally separated roles: DGL plays a role in the early phase of JA production, and DAD1 plays a role in the late phase of JA production. Whereas DGL and DAD1 are necessary and sufficient for JA production, phospholipase D appears to modulate wound response by stimulating DGL and DAD1 expression.


The Plant Cell | 2005

SUPPRESSOR OF FRIGIDA3 Encodes a Nuclear ACTIN-RELATED PROTEIN6 Required for Floral Repression in Arabidopsis

Kyuha Choi; Sanghee Kim; Sang Yeol Kim; Min Soo Kim; Youbong Hyun; Horim Lee; Sunghwa Choe; Sang-Gu Kim; Scott D. Michaels; Ilha Lee

Flowering traits in winter annual Arabidopsis thaliana are conferred mainly by two genes, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FLC acts as a flowering repressor and is regulated by multiple flowering pathways. We isolated an early-flowering mutant, suppressor of FRIGIDA3 (suf3), which also shows leaf serration, weak apical dominance, and infrequent conversion of the inflorescence shoot to a terminal flower. The suf3 mutation caused a decrease in the transcript level of FLC in both a FRI-containing line and autonomous pathway mutants. However, suf3 showed only a partial reduction of FLC transcript level, although it largely suppressed the late-flowering phenotype. In addition, the suf3 mutation caused acceleration of flowering in both 35S-FLC and a flc null mutant, indicating that SUF3 regulates additional factor(s) for the repression of flowering. SUF3 is highly expressed in the shoot apex, but the expression is not regulated by FRI, autonomous pathway genes, or vernalization. SUF3 encodes the nuclear ACTIN-RELATED PROTEIN6 (ARP6), the homolog of which in yeast is a component of an ATP-dependent chromatin-remodeling SWR1 complex. Our analyses showed that SUF3 regulates FLC expression independent of vernalization, FRI, and an autonomous pathway gene, all of which affect the histone modification of FLC chromatin. Subcellular localization using a green fluorescent protein fusion showed that Arabidopsis ARP6 is located at distinct regions of the nuclear periphery.


Plant Journal | 2009

Resetting and regulation of FLOWERING LOCUS C expression during Arabidopsis reproductive development

Jean Choi; Youbong Hyun; Min-Jeong Kang; Hye In Yun; Jae-Young Yun; Clare Lister; Caroline Dean; Richard M. Amasino; Bosl Noh; Yoo-Sun Noh; Yeonhee Choi

The epigenetic regulation of the floral repressor Flowering Locus C (FLC) is one of the critical factors that determine flowering time in Arabidopsis thaliana. Although many FLC regulators, and their effects on FLC chromatin, have been extensively studied, the epigenetic resetting of FLC has not yet been thoroughly characterized. Here, we investigate the FLC expression during gametogenesis and embryogenesis using FLC::GUS transgenic plants and RNA analysis. Regardless of the epigenetic state in adult plants, FLC expression disappeared in gametophytes. Subsequently, FLC expression was reactivated after fertilization in embryos, but not in the endosperm. Both parental alleles contributed equally to the expression of FLC in embryos. Surprisingly, the reactivation of FLC in early embryos was independent of FRIGIDA (FRI) and SUPPRESSOR OF FRIGIDA 4 (SUF4) activities. Instead, FRI, SUF4 and autonomous-pathway genes determined the level of FLC expression only in late embryogenesis. Many FLC regulators exhibited expression patterns similar to that of FLC, indicating potential roles in FLC reprogramming. An FVE mutation caused ectopic expression of FLC in the endosperm. A mutation in PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1 caused defects in FLC reactivation in early embryogenesis, and maintenance of full FLC expression in late embryogenesis. We also show that the polycomb group complex components, Fertilization-Independent endosperm and MEDEA, which mediate epigenetic regulation in seeds, are not relevant for FLC reprogramming. Based on our results, we propose that FLC reprogramming is composed of three phases: (i) repression in gametogenesis, (ii) reactivation in early embryogenesis and (iii) maintenance in late embryogenesis.


The EMBO Journal | 2010

Growth habit determination by the balance of histone methylation activities in Arabidopsis.

Jong-Hyun Ko; Irina Mitina; Yosuke Tamada; Youbong Hyun; Yeonhee Choi; Richard M. Amasino; Bosl Noh; Yoo-Sun Noh

In Arabidopsis, the rapid‐flowering summer‐annual versus the vernalization‐requiring winter‐annual growth habit is determined by natural variation in FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). However, the biochemical basis of how FRI confers a winter‐annual habit remains elusive. Here, we show that FRI elevates FLC expression by enhancement of histone methyltransferase (HMT) activity. EARLY FLOWERING IN SHORT DAYS (EFS), which is essential for FRI function, is demonstrated to be a novel dual substrate (histone H3 lysine 4 (H3K4) and H3K36)‐specific HMT. FRI is recruited into FLC chromatin through EFS and in turn enhances EFS activity and engages additional HMTs. At FLC, the HMT activity of EFS is balanced by the H3K4/H3K36‐ and H3K4‐specific histone demethylase (HDM) activities of autonomous‐pathway components, RELATIVE OF EARLY FLOWERING 6 and FLOWERING LOCUS D, respectively. Loss of HDM activity in summer annuals results in dominant HMT activity, leading to conversion to a winter‐annual habit in the absence of FRI. Thus, our study provides a model of how growth habit is determined through the balance of the H3K4/H3K36‐specific HMT and HDM activities.


Development | 2013

The catalytic subunit of Arabidopsis DNA polymerase α ensures stable maintenance of histone modification

Youbong Hyun; Hyein Yun; Kyunghyuk Park; Hyonhwa Ohr; Okchan Lee; Dong-Hwan Kim; Sibum Sung; Yeonhee Choi

Mitotic inheritance of identical cellular memory is crucial for development in multicellular organisms. The cell type-specific epigenetic state should be correctly duplicated upon DNA replication to maintain cellular memory during tissue and organ development. Although a role of DNA replication machinery in maintenance of epigenetic memory has been proposed, technical limitations have prevented characterization of the process in detail. Here, we show that INCURVATA2 (ICU2), the catalytic subunit of DNA polymerase α in Arabidopsis, ensures the stable maintenance of repressive histone modifications. The missense mutant allele icu2-1 caused a defect in the mitotic maintenance of vernalization memory. Although neither the recruitment of CURLY LEAF (CLF), a SET-domain component of Polycomb Repressive Complex 2 (PRC2), nor the resultant deposition of the histone mark H3K27me3 required for vernalization-induced FLOWERING LOCUS C (FLC) repression were affected, icu2-1 mutants exhibited unstable maintenance of the H3K27me3 level at the FLC region, which resulted in mosaic FLC de-repression after vernalization. ICU2 maintains the repressive chromatin state at additional PRC2 targets as well as at heterochromatic retroelements. In icu2-1 mutants, the subsequent binding of LIKE-HETEROCHROMATIN PROTEIN 1 (LHP1), a functional homolog of PRC1, at PRC2 targets was also reduced. We demonstrated that ICU2 facilitates histone assembly in dividing cells, suggesting a possible mechanism for ICU2-mediated epigenetic maintenance.


Proceedings of the National Academy of Sciences of the United States of America | 2016

DNA demethylation is initiated in the central cells of Arabidopsis and rice

Kyunghyuk Park; M. Yvonne Kim; Martin Vickers; Jin-Sup Park; Youbong Hyun; Takashi Okamoto; Daniel Zilberman; Robert L. Fischer; Xiaoqi Feng; Yeonhee Choi; Stefan Scholten

Significance Flowering plant reproduction involves two fertilization events: a sperm–egg fusion that forms the embryo, and a sperm–central cell fusion that forms the nutritive extraembryonic endosperm. Chromosomes in the embryo, endosperm, and other plant tissues are modified by methylation, a covalent addition to cytosine in DNA that regulates gene expression. Maternal endosperm chromosomes inherited from the central cell display a pattern of extensive demethylation, which is essential for seed development in Arabidopsis thaliana. Demethylation is presumed to occur in the central cell, but direct evidence for this is very limited. Here, we provide a genome-wide DNA methylation analysis of Arabidopsis and rice central cells, which demonstrates that the demethylation observed in the endosperm is indeed initiated in the central cell. Cytosine methylation is a DNA modification with important regulatory functions in eukaryotes. In flowering plants, sexual reproduction is accompanied by extensive DNA demethylation, which is required for proper gene expression in the endosperm, a nutritive extraembryonic seed tissue. Endosperm arises from a fusion of a sperm cell carried in the pollen and a female central cell. Endosperm DNA demethylation is observed specifically on the chromosomes inherited from the central cell in Arabidopsis thaliana, rice, and maize, and requires the DEMETER DNA demethylase in Arabidopsis. DEMETER is expressed in the central cell before fertilization, suggesting that endosperm demethylation patterns are inherited from the central cell. Down-regulation of the MET1 DNA methyltransferase has also been proposed to contribute to central cell demethylation. However, with the exception of three maize genes, central cell DNA methylation has not been directly measured, leaving the origin and mechanism of endosperm demethylation uncertain. Here, we report genome-wide analysis of DNA methylation in the central cells of Arabidopsis and rice—species that diverged 150 million years ago—as well as in rice egg cells. We find that DNA demethylation in both species is initiated in central cells, which requires DEMETER in Arabidopsis. However, we do not observe a global reduction of CG methylation that would be indicative of lowered MET1 activity; on the contrary, CG methylation efficiency is elevated in female gametes compared with nonsexual tissues. Our results demonstrate that locus-specific, active DNA demethylation in the central cell is the origin of maternal chromosome hypomethylation in the endosperm.


Developmental Cell | 2016

Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem.

Youbong Hyun; René Richter; Coral Vincent; Rafael Martínez-Gallegos; Aimone Porri; George Coupland

Flowering is initiated in response to environmental and internal cues that are integrated at the shoot apical meristem (SAM). We show that SPL15 coordinates the basal floral promotion pathways required for flowering of Arabidopsis in non-inductive environments. SPL15 directly activates transcription of the floral regulators FUL and miR172b in the SAM during floral induction, whereas its paralog SPL9 is expressed later on the flanks of the SAM. The capacity of SPL15 to promote flowering is regulated by age through miR156, which targets SPL15 mRNA, and gibberellin (GA), which releases SPL15 from DELLAs. Furthermore, SPL15 and the MADS-box protein SOC1 cooperate to promote transcription of their target genes. SPL15 recruits RNAPII and MED18, a Mediator complex component, in a GA-dependent manner, while SOC1 facilitates active chromatin formation with the histone demethylase REF6. Thus, we present a molecular basis for assimilation of flowering signals and transcriptional control at the SAM during flowering.


Planta | 2011

Identification of regulators required for the reactivation of FLOWERING LOCUS C during Arabidopsis reproduction

Hyein Yun; Youbong Hyun; Min-Jeong Kang; Yoo-Sun Noh; Bosl Noh; Yeonhee Choi

FLOWERING LOCUS C (FLC) is a central floral repressor for the determination of flowering time in Arabidopsis. FLC expression is reactivated upon fertilization and regulated during seed development to ensure the appropriate floral behavior; however, the molecular mechanism for this process is largely unknown. Here, we report the identification of crucial regulators for FLC reactivation during embryogenesis by analyzing FLC::GUS and endogenous FLC expression. We newly define that the full reactivation of FLC requires a FRIGIDA (FRI)-containing protein complex throughout embryogenesis. Mutations in EARLY FLOWERING 7 (ELF7) and VERNALIZATION INDEPENDENCE4 (VIP4) showed severe defects in the reactivation of FLC transcription, suggesting that both of the genes, Arabidopsis homologs of the members of the yeast RNA polymerase II-associated factor 1 (Paf1) complex, are indispensable for FLC reactivation. actin-related protein 6 (arp6), arabidopsis trithorax 1 (atx1), arabidopsis trithorax-related 7 (atxr7), and atx1 atxr7 double mutants also caused the downregulation of FLC during seed development, but the defects were less severe than those in mutants for the FRI- and Paf1-complexes. These results suggest that the ARP6-containing Swr1-complex and FLC-specific histone methyltransferases, ATX1 and ATXR7, have relatively partial roles in FLC reactivation. In contrast to the roles of the histone modifiers, factors in the DNA methylation pathway and biogenesis of small RNAs are not involved in FLC regulation during reproduction. Taken together, our results demonstrate that adjustment by select FLC activators is critical for the re-establishment of an FLC expression state after fertilization to ensure competence for optimal flowering in the next generation.

Collaboration


Dive into the Youbong Hyun's collaboration.

Top Co-Authors

Avatar

Yeonhee Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ilha Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Bosl Noh

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yoo-Sun Noh

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyein Yun

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyonhwa Ohr

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Kyunghyuk Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Min-Jeong Kang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge