Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youguo Niu is active.

Publication


Featured researches published by Youguo Niu.


PLOS ONE | 2012

Developmental Programming of Cardiovascular Dysfunction by Prenatal Hypoxia and Oxidative Stress

Dino A. Giussani; Emily J. Camm; Youguo Niu; Hans G. Richter; Carlos E. Blanco; Rachel Gottschalk; E. Zachary Blake; Katy A. Horder; Avnesh S. Thakor; Jeremy A. Hansell; Andrew D. Kane; F. B. Peter Wooding; Christine M. Cross; Emilio A. Herrera

Fetal hypoxia is a common complication of pregnancy. It has been shown to programme cardiac and endothelial dysfunction in the offspring in adult life. However, the mechanisms via which this occurs remain elusive, precluding the identification of potential therapy. Using an integrative approach at the isolated organ, cellular and molecular levels, we tested the hypothesis that oxidative stress in the fetal heart and vasculature underlies the molecular basis via which prenatal hypoxia programmes cardiovascular dysfunction in later life. In a longitudinal study, the effects of maternal treatment of hypoxic (13% O2) pregnancy with an antioxidant on the cardiovascular system of the offspring at the end of gestation and at adulthood were studied. On day 6 of pregnancy, rats (n = 20 per group) were exposed to normoxia or hypoxia ± vitamin C. At gestational day 20, tissues were collected from 1 male fetus per litter per group (n = 10). The remaining 10 litters per group were allowed to deliver. At 4 months, tissues from 1 male adult offspring per litter per group were either perfusion fixed, frozen, or dissected for isolated organ preparations. In the fetus, hypoxic pregnancy promoted aortic thickening with enhanced nitrotyrosine staining and an increase in cardiac HSP70 expression. By adulthood, offspring of hypoxic pregnancy had markedly impaired NO-dependent relaxation in femoral resistance arteries, and increased myocardial contractility with sympathetic dominance. Maternal vitamin C prevented these effects in fetal and adult offspring of hypoxic pregnancy. The data offer insight to mechanism and thereby possible targets for intervention against developmental origins of cardiac and peripheral vascular dysfunction in offspring of risky pregnancy.


American Journal of Pathology | 2013

Reduced Cystathionine γ-Lyase and Increased miR-21 Expression Are Associated with Increased Vascular Resistance in Growth-Restricted Pregnancies: Hydrogen Sulfide as a Placental Vasodilator

Tereza Cindrova-Davies; Emilio A. Herrera; Youguo Niu; John Kingdom; Dino A. Giussani; Graham J. Burton

Increased vascular impedance in the fetoplacental circulation is associated with fetal hypoxia and growth restriction. We sought to investigate the role of hydrogen sulfide (H2S) in regulating vasomotor tone in the fetoplacental vasculature. H2S is produced endogenously by catalytic activity of cystathionine β-synthase and cystathionine γ-lyase (CSE). Immunohistochemical analysis localized CSE to smooth muscle cells encircling arteries in stem villi. Immunoreactivity was reduced in placentas from pregnancies with severe early-onset growth-restriction and preeclampsia displaying abnormal umbilical artery Doppler waveforms compared with preeclamptic placentas with normal waveforms and controls. These findings were confirmed at the protein and mRNA levels. MicroRNA-21, which negatively regulates CSE expression, was increased in placentas with abnormal Doppler waveforms. Exposure of villus explants to hypoxia-reoxygenation significantly reduced CSE protein and mRNA and increased microRNA-21 expression. No changes were observed in cystathionine β-synthase expression, immunolocalized principally to the trophoblast, in pathologic placentas or in vitro. Finally, perfusion of normal placentas with an H2S donor, after preconstriction with a thromboxane mimetic, resulted in dose-dependent vasorelaxation. Glibenclamide and NG-nitro-l-arginine methyl ester partially blocked the effect, indicating that H2S acts through ATP-sensitive K+ channels and nitric oxide synthesis. These results demonstrate that H2S is a powerful vasodilator of the placental vasculature and that expression of CSE is reduced in placentas associated with increased vascular resistance.


Endocrinology | 2014

Maternal Diet-induced Obesity Programs Cardiovascular Dysfunction in Adult Male Mouse Offspring Independent of Current Body Weight

Heather L. Blackmore; Youguo Niu; Denise S. Fernandez-Twinn; Jane L. Tarry-Adkins; Dino A. Giussani; Susan E. Ozanne

Obese pregnancies are not only associated with adverse consequences for the mother but also the long-term health of her child. Human studies have shown that individuals from obese mothers are at increased risk of premature death from cardiovascular disease (CVD), but are unable to define causality. This study aimed to determine causality using a mouse model of maternal diet–induced obesity. Obesity was induced in female C57BL/6 mice by feeding a diet rich in simple sugars and saturated fat 6 weeks prior to pregnancy and throughout pregnancy and lactation. Control females were fed laboratory chow. Male offspring from both groups were weaned onto chow and studied at 3, 5, 8, and 12 weeks of age for gross cardiac morphometry using stereology, cardiomyocyte cell area by histology, and cardiac fetal gene expression using qRT-PCR. Cardiac function was assessed by isolated Langendorff technology at 12 weeks of age and hearts were analyzed at the protein level for the expression of the β1 adrenergic receptor, muscarinic type-2 acetylcholine receptor, and proteins involved in cardiac contraction. Offspring from obese mothers develop pathologic cardiac hypertrophy associated with re-expression of cardiac fetal genes. By young adulthood these offspring developed severe systolic and diastolic dysfunction and cardiac sympathetic dominance. Importantly, cardiac dysfunction occurred in the absence of any change in corresponding body weight and despite the offspring eating a healthy low-fat diet. These findings provide a causal link to explain human observations relating maternal obesity with premature death from CVD in her offspring.


The Journal of Physiology | 2004

Utilization of triacylglycerol-rich lipoproteins by the working rat heart: routes of uptake and metabolic fates

Youguo Niu; David Hauton; Rhys D. Evans

Very‐low‐density lipoprotein (VLDL) and chylomicrons (CMs) transport triacylglycerol (TAG) to peripheral tissues. Lipoprotein‐TAG may gain access to target cells by lipoprotein lipase (LPL) hydrolysis or via receptor‐mediated uptake; the principal routes of entry of VLDL and CM into heart are unknown, and different routes of entry may result in different metabolic fates. To examine this, isolated working rat hearts were perfused with rat VLDL and CMs, dual‐labelled with [3H]TAG and [14C]cholesterol. Uptake and utilization of CM‐TAG were significantly greater than VLDL‐TAG, but both were decreased significantly (more than halved) by tetrahydrolipstatin (THL, an inhibitor of lipoprotein lipase). By contrast, uptake of VLDL‐cholesterol was much higher than CM‐cholesterol (P < 0.01), and suramin (a lipoprotein receptor antagonist) decreased cholesterol uptake of both forms. CM‐TAG oxidation rate was more than 4‐fold higher than VLDL‐TAG oxidation. However, suramin decreased TAG oxidation from both VLDL and CM without affecting TAG uptake or total utilization, suggesting that the TAG gaining access through receptor‐mediated pathways is preferentially ‘channelled’ towards oxidation. Most (79%) CM‐TAG was oxidized whilst the proportion of VLDL‐TAG oxidized was only about half (49%). In the presence of suramin, there was a significant increase in esterification (incorporation of assimilated [3H]TAG into myocardial tissue [3H]lipids, mainly TAG) of assimilated TAG from both VLDL and CMs, again suggesting that receptor‐mediated TAG uptake is directed towards oxidation rather than esterification. The importance of this relatively small pool of TAG is indicated by the fact that cardiac mechanical function declined markedly when lipoprotein receptors were inhibited. These results suggest that CMs, most fatty acids of which gain access into cardiomyocytes through LPL‐mediated hydrolysis, are the major supplier of TAG for hearts to oxidize; however, the metabolic fate of VLDL was split evenly between oxidation and deposition as myocardial tissue lipid. Most importantly, VLDL may play a regulatory role in heart lipid metabolism through a lipoprotein receptor‐mediated mechanism.


The Journal of Physiology | 2016

Fetal in vivo continuous cardiovascular function during chronic hypoxia.

Beth J. Allison; Kirsty L. Brain; Youguo Niu; Andrew D. Kane; Emilio A. Herrera; Avnesh S. Thakor; Kimberley J. Botting; Christine M. Cross; Nozomi Itani; Kl Skeffington; Christian Beck; Dino A. Giussani

The in vivo fetal cardiovascular defence to chronic hypoxia has remained by and large an enigma because no technology has been available to induce significant and prolonged fetal hypoxia whilst recording longitudinal changes in fetal regional blood flow as the hypoxic pregnancy is developing. We introduce a new technique able to maintain chronically instrumented maternal and fetal sheep preparations under isobaric chronic hypoxia for most of gestation, beyond levels that can be achieved by high altitude and of relevance in magnitude to the human intrauterine growth‐restricted fetus. This technology permits wireless recording in free‐moving animals of longitudinal maternal and fetal cardiovascular function, including beat‐to‐beat alterations in pressure and blood flow signals in regional circulations. The relevance and utility of the technique is presented by testing the hypotheses that the fetal circulatory brain sparing response persists during chronic fetal hypoxia and that an increase in reactive oxygen species in the fetal circulation is an involved mechanism.


Advances in Experimental Medicine and Biology | 2014

Heart Disease Link to Fetal Hypoxia and Oxidative Stress

Dino A. Giussani; Youguo Niu; Emilio A. Herrera; Hans G. Richter; Emily J. Camm; Avnesh S. Thakor; Andrew D. Kane; Jeremy A. Hansell; Kirsty L. Brain; Kl Skeffington; Nozomi Itani; F. B. Peter Wooding; Christine M. Cross; Beth J. Allison

The quality of the intrauterine environment interacts with our genetic makeup to shape the risk of developing disease in later life. Fetal chronic hypoxia is a common complication of pregnancy. This chapter reviews how fetal chronic hypoxia programmes cardiac and endothelial dysfunction in the offspring in adult life and discusses the mechanisms via which this may occur. Using an integrative approach in large and small animal models at the in vivo, isolated organ, cellular and molecular levels, our programmes of work have raised the hypothesis that oxidative stress in the fetal heart and vasculature underlies the mechanism via which prenatal hypoxia programmes cardiovascular dysfunction in later life. Developmental hypoxia independent of changes in maternal nutrition promotes fetal growth restriction and induces changes in the cardiovascular, metabolic and endocrine systems of the adult offspring, which are normally associated with disease states during ageing. Treatment with antioxidants of animal pregnancies complicated with reduced oxygen delivery to the fetus prevents the alterations in fetal growth, and the cardiovascular, metabolic and endocrine dysfunction in the fetal and adult offspring. The work reviewed offers both insight into mechanisms and possible therapeutic targets for clinical intervention against the early origin of cardiometabolic disease in pregnancy complicated by fetal chronic hypoxia.


The Journal of Physiology | 2012

A role for xanthine oxidase in the control of fetal cardiovascular function in late gestation sheep

Emilio A. Herrera; Andrew D. Kane; Jeremy A. Hansell; Avnesh S. Thakor; Beth J. Allison; Youguo Niu; Dino A. Giussani

Key points  •  There is growing physiological and clinical interest in the role of the enzyme xanthine oxidase in the regulation of fetal cardiovascular function. •  The xanthine oxidase inhibitor allopurinol is undergoing human clinical trials in complicated pregnancy to protect the fetal brain from injury by decreasing excessive generation of reactive oxygen species (ROS) and increasing nitric oxide (NO) availability. However, the effects on fetal cardiovascular physiology of xanthine oxidase inhibition are largely unknown. •  We have previously reported that the balance between ROS and NO plays an important physiological role in the control of fetal cardiovascular function. Therefore, it seems likely that allopurinol might perturb this balance and alter fetal cardiovascular homeostasis. •  Here, we report that maternal allopurinol treatment in late gestation ovine pregnancy has significant in vivo effects on umbilical blood flow and the cardiovascular system of the mother and fetus by altering NO and β1‐adrenergic mechanisms. •  The evidence suggests that xanthine oxidase has an important role in basal cardiovascular function in the fetus during late gestation. Therefore, further research is warranted before safe clinical application of maternal allopurinol during pregnancy in humans.


The Journal of Physiology | 2014

Xanthine oxidase and the fetal cardiovascular defence to hypoxia in late gestation ovine pregnancy

Andrew D. Kane; Jeremy A. Hansell; Emilio A. Herrera; Beth J. Allison; Youguo Niu; Kirsty L. Brain; Joepe J. Kaandorp; Jan B. Derks; Dino A. Giussani

Periods of impaired oxygenation or acute hypoxia in the fetus can be common during labour and how the fetus withstands these challenges is of interest. During hypoxia, the fetus shunts blood flow away from peripheral and towards essential vascular beds: the so called brain‐sparing effect. Part of the peripheral vasoconstriction is driven by reactive oxygen species (ROS) that inactivate nitric oxide (NO), thereby limiting its vasodilator action. Here, we investigate the source of ROS generation contributing to fetal peripheral vasoconstriction during hypoxia, and show that xanthine oxidase (XO) is fundamentally involved. Fetal exposure to the XO inhibitor allopurinol markedly diminished the peripheral vasoconstriction during hypoxia via NO‐dependent mechanisms. The data increase our understanding of the physiological control of fetal cardiovascular function during stress. The findings are also of significant clinical relevance as allopurinol is being administered to pregnant women in clinical obstetric trials.


Journal of Pineal Research | 2016

Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo

Nozomi Itani; Kl Skeffington; Christian Beck; Youguo Niu; Dino A. Giussani

There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy.


Journal of Huntington's disease | 2012

Direct Evidence of Progressive Cardiac Dysfunction in a Transgenic Mouse Model of Huntington's Disease

Nigel I. Wood; Stephen J. Sawiak; Guido Buonincontri; Youguo Niu; Andrew D. Kane; T. Adrian Carpenter; Dino A. Giussani; A. Jennifer Morton

HD is a progressive genetic neurological disorder, characterized by motor as well as cognitive impairments. The gene carrying the mutation causing Huntingtons disease (HD) is not brain specific, and there is increasing evidence for peripheral, as well as brain pathology in this disorder. Here, we used in vivo and ex vivo techniques to assess the cardiac function of mice transgenic for the HD mutation. Using magnetic resonance imaging (MRI) of the beating heart, we show that abnormalities previously reported in end-stage mice are present by mid-stages of the disease. We also found abnormalities that have not been hitherto reported, including changes in cardiac efficiency and a mechanical distortion of the beating heart. Using the Langendorff preparation, we show reduced coronary blood flow, impaired myocardial contractility and reduced left ventricular developed pressure in HD mouse hearts. Together, our findings suggest that there is significant pathology of the HD mouse heart, even by mid stages of disease. Previous clinical research has demonstrated that the risk of cognitive symptoms increases markedly in patients with heart failure. R6/2 mice show significant progressive cognitive abnormalities, so we hypothesize that cardiac pathology in the R6/2 mouse may contribute, not only to their progressive decline and death, but also to their cognitive dysfunction. We suggest that closer attention should be paid to cardiovascular symptoms in HD patients.

Collaboration


Dive into the Youguo Niu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nozomi Itani

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Lees

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge