Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youli Li is active.

Publication


Featured researches published by Youli Li.


Applied Physics Letters | 1996

Role of threading dislocation structure on the x‐ray diffraction peak widths in epitaxial GaN films

B. Heying; X. H. Wu; S. Keller; Youli Li; D. Kapolnek; Bernd Keller; S. P. DenBaars; James S. Speck

In this letter we demonstrate that the anomalously low (002) x‐ray rocking curve widths for epitaxial hexagonal GaN films on (001) sapphire are a result of a specific threading dislocation (TD) geometry. Epitaxial GaN films were grown on c‐plane sapphire by atmospheric pressure metalorganic chemical vapor deposition (MOCVD) in a horizontal flow reactor. Films were grown with (002) rocking curves (ω‐scans) widths as low as 40 arcsec and threading dislocation densities of ∼2×1010 cm−2. The threading dislocations in this film lie parallel to the [001] direction and within the limit of imaging statistics, all are pure edge with Burgers vectors parallel to the film/substrate interface. These TDs will not distort the (002) planes. However, distortion of asymmetric planes, such as (102), is predicted and confirmed in (102) rocking curve widths of 740 arcsec. These results are compared with films with (002) rocking curves of ∼270 arcsec and threading dislocation densities of ∼7×108 cm−2.


Applied Physics Letters | 1998

Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices

R. D. Vispute; V. Talyansky; S. Choopun; R. P. Sharma; T. Venkatesan; Mingyan He; X. Tang; Joshua B. Halpern; M. G. Spencer; Youli Li; L. Salamanca-Riba; Agis A. Iliadis; Kenneth A. Jones

ZnO thin films have been grown heteroepitaxially on epi-GaN/sapphire (0001) substrates. Rutherford backscattering spectroscopy, ion channeling, and high resolution transmission electron microscopy studies revealed high-quality epitaxial growth of ZnO on GaN with an atomically sharp interface. The x-ray diffraction and ion channeling measurements indicate near perfect alignment of the ZnO epilayers on GaN as compared to those grown directly on sapphire (0001). Low-temperature cathodoluminescence studies also indicate high optical quality of these films presumably due to the close lattice match and stacking order between ZnO and GaN. Lattice-matched epitaxy and good luminescence properties of ZnO/GaN heterostructures are thus promising for ultraviolet lasers. These heterostructures demonstrate the feasibility of integrating hybrid ZnO/GaN optoelectronic devices.


Applied Physics Letters | 2003

Grazing-incidence small angle x-ray scattering studies of phase separation in hafnium silicate films

Susanne Stemmer; Youli Li; Brendan Foran; P. Lysaght; S. K. Streiffer; P. H. Fuoss; Soenke Seifert

Grazing-incidence small-angle x-ray scattering (GISAXS) and high-resolution transmission electron microscopy (HRTEM) were used to investigate phase separation in hafnium silicate films after rapid thermal annealing between 700 and 1000 °C. 4-nm-thick Hf–silicate films with 80 and 40 mol % HfO2, respectively, were prepared by metalorganic vapor deposition. Films of the two compositions showed distinctly different phase-separated microstructures, consistent with two limiting cases of microstructural evolution: nucleation/growth and spinodal decomposition. Films with 40 mol % HfO2 phase separated in the amorphous by spinodal decomposition and exhibited a characteristic wavelength in the plane of the film. Decomposition with a wavelength of ∼3 nm could be detected at 800 °C. At 1000 °C the films rapidly demixed with a wavelength of 5 nm. In contrast, films with 80 mol % HfO2 phase separated by nucleation and growth of crystallites, and showed a more random microstructure. The factors determining specific film...


Journal of Applied Crystallography | 2008

Scatterless hybrid metal–single-crystal slit for small-angle X-ray scattering and high-resolution X-ray diffraction

Youli Li; Roy Beck; Tuo Huang; Myung Chul Choi; Morito Divinagracia

A simple hybrid design has been developed to produce practically scatterless aperture slits for small-angle X-ray scattering and high-resolution X-ray diffraction. The hybrid slit consists of a rectangular single-crystal substrate (e.g. Si or Ge) bonded to a high-density metal base with a large taper angle (> 10°). The beam-defining single-crystal tip is oriented far from any Bragg peak position with respect to the incident beam and hence produces none of the slit scattering commonly associated with conventional metal slits. It has been demonstrated that the incorporation of the scatterless slits leads to a much simplified design in small-angle X-ray scattering instruments employing only one or two apertures, with dramatically increased intensity (a threefold increase observed in the test setup) and improved low-angle resolution.


Journal of the American Chemical Society | 2011

Two-dimensional packing of short DNA with nonpairing overhangs in cationic liposome-DNA complexes: from Onsager nematics to columnar nematics with finite-length columns.

Nathan F. Bouxsein; Cecilia Leal; Christopher S. McAllister; Kai K. Ewert; Youli Li; Charles E. Samuel; Cyrus R. Safinya

We report the formation of liquid crystalline (LC) phases of short double-stranded DNA with nonpairing (nonsticky) overhangs, confined between two-dimensional (2D) lipid bilayers of cationic liposome-DNA complexes. In a landmark study (Science2007, 318, 1276), Nakata et al. reported on the discovery of strong end-to-end stacking interactions between short DNAs (sDNAs) with blunt ends, leading to the formation of 3D nematic (N) and columnar LC phases. Employing synchrotron small-angle X-ray scattering, we have studied the interplay between shape anisotropy-induced and DNA end-to-end interaction-induced N ordering for 11, 24, and 48 bp sDNA rods with single-stranded oligo-thymine (T) overhangs modulating the end-to-end interactions. For suppressed stacking interactions with 10-T overhangs, the volume fraction of sDNA at which the 2D isotropic (I)-to-N transition occurs for 24 and 48 bp sDNA rods depended on their length-to-width (L/D) shape anisotropy, qualitatively consistent with Onsagers theory for the entropic alignment of rigid rods. As the overhang length is reduced from 10 to 5 and 2 T for 24 and 48 bp sDNA, the N-to-I transition occurs at lower volume fractions, indicating the onset of some degree of end-to-end stacking interactions. The 11 bp sDNA rods with 5- and 10-T overhangs remain in the I phase, consistent with their small shape anisotropy (L/D ≈ 1.9) below the limit for Onsager LC ordering. Unexpectedly, in contrast to the behavior of 24 and 48 bp sDNA, the end-to-end interactions between 11 bp sDNA rods with 2-T overhangs set in dramatically, and a novel 2D columnar N phase (N(C)) with finite-length columns formed. The building blocks of this phase are comprised of 1D stacks of (on average) four 11 bp DNA-2T rods with an effective L(stacked)/D ≈ 8.2. Our findings have implications for the DNA-directed assembly of nanoparticles on 2D platforms via end-to-end interactions and in designing optimally packed LC phases of short anisotropic biomolecules (such as peptides and short-interfering RNAs) on nanoparticle membranes, which are used in gene silencing and chemical delivery.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules.

Peter J. Chung; Myung Chul Choi; Herbert P. Miller; H. Eric Feinstein; Uri Raviv; Youli Li; Leslie Wilson; Stuart C. Feinstein; Cyrus R. Safinya

Significance The microtubule-associated protein Tau is known to stabilize microtubules against depolymerization in neuronal axons, ensuring proper trafficking of organelles along microtubules in long axons. Abnormal interactions between Tau and microtubules are implicated in Alzheimer’s disease and other neurodegenerative disorders. We directly measured forces between microtubules coated with Tau isoforms by synchrotron small-angle X-ray scattering of reconstituted Tau–microtubule mixtures under osmotic pressure (mimicking molecular crowding in cells). We found that select Tau isoforms fundamentally alter forces between microtubules by undergoing a conformational change on microtubule surfaces at a coverage indicative of an unusually extended Tau state. This gain of function by longer isoforms in imparting steric stabilization to microtubules is essential in preventing microtubule aggregation and loss of function in organelle trafficking. Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer’s. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000–20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000–2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT–MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment.


Nature Materials | 2014

Transformation of taxol-stabilized microtubules into inverted tubulin tubules triggered by a tubulin conformation switch

Miguel A. Ojeda-Lopez; Daniel J. Needleman; Chae Yeon Song; Avi Ginsburg; Phillip Kohl; Youli Li; Herbert P. Miller; Leslie Wilson; Uri Raviv; Myung Chul Choi; Cyrus R. Safinya

Bundles of taxol-stabilized microtubules (MTs) – hollow tubules comprised of assembled αβ-tubulin heterodimers – spontaneously assemble above a critical concentration of tetravalent spermine and are stable over long times at room temperature. Here we report that at concentrations of spermine several-fold higher the MT bundles (BMT) quickly become unstable and undergo a shape transformation to bundles of inverted tubulin tubules (BITT), the outside surface of which corresponds to the inner surface of the BMT tubules. Using transmission electron microscopy and synchrotron small-angle x-ray scattering, we quantitatively determined both the nature of the BMT to BITT transformation pathway, which results from a spermine-triggered conformation switch from straight to curved in the constituent taxol-stabilized tubulin oligomers, and the structure of the BITT phase, which is formed of tubules of helical tubulin oligomers. Inverted tubulin tubules provide a platform for studies requiring exposure and availability of the inside, luminal surface of MTs to MT-targeted-drugs and MT-associated-proteins.


Journal of the American Chemical Society | 2009

The Temperature-Dependent Structure of Alkylamines and Their Corresponding Alkylammonium-Alkylcarbamates

Nataly Belman; Jacob N. Israelachvili; Youli Li; Cyrus R. Safinya; Joel Bernstein; Yuval Golan

In spite of the wide use of alkylamine (AA) surfactants, little attention has been paid to their spontaneous reactivity in air. Exposure of AA surfactants to CO(2) results in the formation of alkylammonium-alkylcarbamate (AAAC) molecular pairs. The effect of hydrocarbon chain length on the reactivity of AAs was followed by monitoring mass gain vs time under atmospheric conditions as well as in a saturated CO(2) environment. The rates of conversion to AAAC decreased with hydrocarbon chain length. Indexed powder X-ray diffractograms and the corresponding unit cells are presented for all phases of AAs and AAACs with chain lengths of 14, 16, and 18 carbons. Temperature-resolved powder X-ray diffraction of AAACs indicated anisotropic thermal expansion occurring exclusively along the a direction of the unit cell.


Nano Letters | 2009

Reaction of Alkylamine Surfactants with Carbon Dioxide: Relevance to Nanocrystal Synthesis

Nataly Belman; Jacob N. Israelachvili; Youli Li; Cyrus R. Safinya; Joel Bernstein; Yuval Golan

Exposure of tetradecylamine, hexadecylamine, and octadecylamine to CO(2) results in their transformation to alkylammonium alkylcarbamate (AAAC) pairs, which we find is a major source of irreproducibility in nanoparticle synthesis. Controlled exposure to CO(2) allows for highly uniform, ultranarrow ZnS nanorods coated with tetradecylamine to be reproducibly obtained in a single step. The crystal structures of the alkylamines and their AAAC analogs were investigated by powder X-ray diffraction and their isostructural three-dimensional unit cells are reported.


Langmuir | 2008

Direct Imaging of Aligned Neurofilament Networks Assembled Using In Situ Dialysis in Microchannels

H. C. Hesse; Roy Beck; Changsong Ding; Jayna B. Jones; Joanna Deek; Noel C. MacDonald; Youli Li; Cyrus R. Safinya

We report a technique to produce aligned neurofilament networks for direct imaging and diffraction studies using in situ dialysis in a microfluidic device. The alignment is achieved by assembling neurofilaments from protein subunits confined within microchannels. Resulting network structure was probed by polarized optical microscopy and atomic force microscopy, which confirmed a high degree of protein alignment inside the microchannels. This technique can be expanded to facilitate structural studies of a wide range of filamentous proteins and their hierarchical assemblies under varying assembly conditions.

Collaboration


Dive into the Youli Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uri Raviv

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chaeyeon Song

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge