Youlin Gu
National University of Defense Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youlin Gu.
Applied Spectroscopy | 2016
Peng Wang; Hongxia Liu; Yizheng Zhao; Youlin Gu; Wei Chen; Li Wang; Le Li; Xinying Zhao; Wuhu Lei; Yihua Hu; Zhiming Zheng
In this study, seven microbial materials (entomogenous fungi Bb3088 mycelia, entomogenous fungi Bb3088 spores, entomogenous fungi Ma2677 mycelia, entomogenous fungi Ma2677 spores, Bacillus subtilis 8204, Staphylococcus aureus 6725, and Saccharomyces cerevisiae 1025) were used to measure electromagnetic (EM) signal extinction. They were subjected to light absorption and reflection measurements in the range of 4000–400 cm−1 (2.5–25 µm) using Fourier transform infrared spectroscopy. The specular reflection spectrum method was used to calculate the real (n) and imaginary (k) parts of the complex refractive index. The complex refractive index with real part n and imaginary part k in the infrared band satisfies the following conditions n ≥ 1 and k ≥ 0. The mass extinction coefficient was calculated based on Mie theory. Entomogenous fungi Ma2677 spores and entomogenous fungi Bb3088 spores were selected as EM signal extinction materials in the smoke box test. The transmittances of entomogenous fungi Bb3088 spores and entomogenous fungi Ma2677 spores were 11.63% and 5.42%, and the mass extinction coefficients were 1.8337 m2/g and 1.227 m2/g. These results showed that entomogenous fungi Bb3088 spores and entomogenous fungi Ma2677 spores have higher extinction characteristics than other microbial materials.
Applied Spectroscopy | 2017
Le Li; Yihua Hu; Youlin Gu; Xinying Zhao; Shilong Xu; Lei Yu; Zhiming Zheng; Peng Wang
In this study, the spatial structure of randomly distributed clusters of fungi An0429 spores was simulated using a cluster aggregation (CCA) model, and the single scattering parameters of fungi An0429 spores were calculated using the discrete dipole approximation (DDA) method. The transmittance of 10.6 µm infrared (IR) light in the aggregated fungi An0429 spores swarm is simulated by using the Monte Carlo method. Several parameters that affect the transmittance of 10.6 µm IR light, such as the number and radius of original fungi An0429 spores, porosity of aggregated fungi An0429 spores, and density of aggregated fungi An0429 spores of the formation aerosol area were discussed. Finally, the transmittances of microbial materials with different qualities were measured in the dynamic test platform. The simulation results showed that the parameters analyzed were closely connected with the extinction performance of fungi An0429 spores. By controlling the value of the influencing factors, the transmittance could be lower than a certain threshold to meet the requirement of attenuation in application. In addition, the experimental results showed that the Monte Carlo method could well reflect the attenuation law of IR light in fungi An0429 spore agglomerates swarms.
Optics Express | 2018
Youlin Gu; Yihua Hu; Xinying Zhao; Xi Chen; Peng Wang; Zhiming Zheng
We present a method to show that average mass extinction coefficient of microbes evaluated via Lorenz-Mie theory can be used to discriminate between viable and dead microbes. Reflectance of viable and dead self-cultured fungal spores and mycelia were measured by the Fourier transform infrared spectroscopy. Complex refractive indices and mass extinction coefficient of viable and dead fungal spores and mycelia were obtained in terms of Kramers-Kronig (KK) relation and Lorenz-Mie theory respectively. Smoke box experimental system was built to validate the effectiveness of the method. The results show that viable and dead fungal spores and mycelia via average mass extinction coefficients can be distinguished. The method can be used to discriminate the bioactivity of microbes and has potential applications in identification, detection, and optical characteristics of viable and dead microbial materials.
LIDAR Imaging Detection and Target Recognition 2017 | 2017
Yihua Hu; Baokun Huang; Youlin Gu; Le Li; Xinying Zhao; Yueguang Lv; Jianzhong Su; Wei Gong; Jian Yang; Weimin Bao; Weibiao Chen; Zelin Shi; Jindong Fei; Shensheng Han; Weiqi Jin
With the increasing demands for new biological extinction materials in military and civilian fields, the artificially prepared flocculent biological particles are equivalent to bullet rosette particles. Then the unit particles with different numbers and lengths of branches are built, and the aggregated particles with different structures are built further. Next the structures of biological particles are characterized by parameterization. And the discrete dipole approximation method is used to calculate the extinction efficiency factor for biological particles. The results indicate that the structures and spatial arrangement of unit particles have great impact on the extinction performance of biological particles. The extinction performance of unit particles is positively correlated to the number and length of branches in the far infrared waveband. Furthermore, the extinction performance of aggregated particles is positively correlated to the porosity in the far infrared waveband. The model provides a theoretical basis for the further development and morphology control of biological extinction materials.
AOPC 2015: Telescope and Space Optical Instrumentation | 2015
Xinying Zhao; Yihua Hu; Youlin Gu; Le Li
Microorganism aggregated particle swarm, which is quite an important composition of complex media environment, can be developed as a new kind of infrared functional materials. Current researches mainly focus on the optical properties of single microorganism particle. As for the swarm, especially the microorganism aggregated particle swarm, a more accurate simulation model should be proposed to calculate its extinction effect. At the same time, certain parameters deserve to be discussed, which helps to better develop the microorganism aggregated particle swarm as a new kind of infrared functional materials. In this paper, take Aspergillus Niger spore as an example. On the one hand, a new calculation model is established. Firstly, the cluster-cluster aggregation (CCA) model is used to simulate the structure of Aspergillus Niger spore aggregated particle. Secondly, the single scattering extinction parameters for Aspergillus Niger spore aggregated particle are calculated by using the discrete dipole approximation (DDA) method. Thirdly, the transmittance of Aspergillus Niger spore aggregated particle swarm is simulated by using Monte Carlo method. On the other hand, based on the model proposed above, what influences can wavelength causes has been studied, including the spectral distribution of scattering intensity of Aspergillus Niger spore aggregated particle and the infrared spectral transmittance of the aggregated particle swarm within the range of 8~14μm incident infrared wavelengths. Numerical results indicate that the scattering intensity of Aspergillus Niger spore aggregated particle reduces with the increase of incident wavelengths at each scattering angle. Scattering energy mainly concentrates on the scattering angle between 0~40°, forward scattering has an obvious effect. In addition, the infrared transmittance of Aspergillus Niger spore aggregated particle swarm goes up with the increase of incident wavelengths. However, some turning points of the trend are associated with the absorption capacity of the swarm. When parameters of the swarm are set as follows: each Aspergillus Niger spore aggregated particle contains 40 original particles, the radius of original particle is 1.5μm, the density of aggregated particles is around 200/cm3, the measurement area is 4 meters thick, under conditions mentioned above, the infrared transmittance can be less than 10% between the incident wavelengths of 9.5~13μm. In the end, all the results provide the basis for better developing the microorganism aggregated particle swarm as a new kind of infrared functional materials and precisely choosing the effective defiladed infrared band.
AOPC 2015: Optical and Optoelectronic Sensing and Imaging Technology | 2015
Yu Gu; Yi-hua Hu; Shiqi Hao; Youlin Gu; Nanxiang Zhao; Yang-yang Wang
Laser reflective tomography is a long-range, high-resolution active detection technology, whose advantage is that the spatial resolution is unrelated with the imaging distance. Accompany satellite is a specific satellite around the target spacecraft with encircling movement. When using the accompany satellite to detect the target aircraft, multi-angle echo data can be obtained with the application of reflective tomography imaging. The feasibility of such detection working mode was studied in this article. Accompany orbit model was established with horizontal circular fleet and the parameters of accompany flight was defined. The simulation of satellite-to-satellite reflective tomography imaging with satellite-accompany was carried out. The operating mode of reflective tomographic data acquisition from monostatic laser radar was discussed and designed. The flight period, which equals to the all direction received data consuming time, is one of the important accompany flight parameters. The azimuth angle determines the plane of image formation while the elevation angle determines the projection direction. Both of the azimuth and elevation angles guide the satellite attitude stability controller in order to point the laser radar spot on the target. The influences of distance between accompany satellite and target satellite on tomographic imaging consuming time was analyzed. The influences of flight period, azimuth angle and elevation angle on tomographic imaging were analyzed as well. Simulation results showed that the satellite-accompany laser reflective tomography is a feasible and effective method to the satellite-to-satellite detection.
AOPC 2015: Optical Test, Measurement, and Equipment | 2015
Le Li; Yihua Hu; Youlin Gu; Wei Chen; Shilong Xu; Xinying Zhao
Spore is an important part of bioaerosols. The optical characteristics of spore is a crucial parameter for study on bioaerosols. The reflection within the waveband of 2.5 to15μm were measured by squash method. Based on the measured data, Complex refractive index of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14 μm were calculated by using Krames-Kronig (K-K) relationship. Then,the mass extinction coefficient of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14μm were obtained by utilizing Mie scattering theory, and the results were analyzed and discussed. The average mass extinction coefficient of Aspergillus oryzae spores is 0.51 m2/g in the range of 3 to 5μm,and 0.48m2/g in the range of 8 to 14μm. Compared with common inorganic compounds, Aspergillus oryzae spores possesses a good extinction performance in infrared band.
Archive | 2012
Yihua Hu; Nanxiang Zhao; Yonghua Wu; Wuhu Lei; Youlin Gu; Shiqi Hao; Sheng Luo; Di Wang; Shanjing Chen; Xiaochun Cai
Archive | 2011
Shiqi Hao; Yihua Hu; Wuhu Lei; Nanxiang Zhao; Xiaochun Cai; Youlin Gu
Optik | 2019
Youlin Gu; Yihua Hu; Xinying Zhao; Xi Chen; Peng Wang; Zhiming Zheng