Youn Hee Jee
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youn Hee Jee.
Nature Communications | 2016
Julian C. Lui; Presley Garrison; Quang Nguyen; Michal Ad; Chithra Keembiyehetty; Weiping Chen; Youn Hee Jee; Ellie Landman; Ola Nilsson; Kevin M. Barnes; Jeffrey Baron
Histone methyltransferases EZH1 and EZH2 catalyse the trimethylation of histone H3 at lysine 27 (H3K27), which serves as an epigenetic signal for chromatin condensation and transcriptional repression. Genome-wide associated studies have implicated EZH2 in the control of height and mutations in EZH2 cause Weaver syndrome, which includes skeletal overgrowth. Here we show that the combined loss of Ezh1 and Ezh2 in chondrocytes severely impairs skeletal growth in mice. Both of the principal processes underlying growth plate chondrogenesis, chondrocyte proliferation and hypertrophy, are compromised. The decrease in chondrocyte proliferation is due in part to derepression of cyclin-dependent kinase inhibitors Ink4a/b, while ineffective chondrocyte hypertrophy is due to the suppression of IGF signalling by the increased expression of IGF-binding proteins. Collectively, our findings reveal a critical role for H3K27 methylation in the regulation of chondrocyte proliferation and hypertrophy in the growth plate, which are the central determinants of skeletal growth.
The Journal of Clinical Endocrinology and Metabolism | 2011
Rugia Shohreh; Rosa Sherafat-Kazemzadeh; Youn Hee Jee; Ari M. Blitz; Roberto Salvatori
BACKGROUND Mutations in the genes encoding for GHRH receptor (GHRHR) and GH (GH1) are the most common cause of familial isolated GH deficiency (IGHD). GHRHR mutations are often associated with anterior pituitary hypoplasia (APH), but this has been reported almost exclusively in children older than 8 yr. We analyzed the GHRHR and measured pituitary size in a consanguineous family with the father and three of the five siblings with IGHD. OBJECTIVE The aim of the study was to find the mutated gene in a family with severe IGHD. METHODS We sequenced the whole GHRHR coding regions and the intron-exon boundaries from peripheral DNA of the index patient. After identifying the novel mutation, we sequenced the region of interest in the other members of the family. We measured the anterior pituitary volume from magnetic resonance imaging (MRI). RESULTS The father and the three affected children were homozygous for a new frame-shift mutation in the coding sequence of exon 4 (corresponding to the extracellular domain of the receptor) (c.340delG) that places the downstream sequence out of frame [corrected]. The mother and two unaffected siblings were heterozygous for the mutation. Two of the affected children had MRI evidence of APH before reaching 6 yr of age. CONCLUSIONS We describe a new mutation in the GHRHR in a family with IGHD. The presence of frank APH before age 6 yr shows that MRI-evident reduced pituitary size can be present in GHRHR mutations even in children younger than 8 yr of age.
Clinical Genetics | 2017
Youn Hee Jee; Nadine Sowada; Thomas C. Markello; Iraj Rezvani; Guntram Borck; Jeffrey Baron
Linear growth failure can be caused by many different genetic abnormalities. In many cases, the genetic defect affects not only the growth plate, causing short stature but also other organs/tissues causing additional clinical abnormalities. A 10‐year old boy was evaluated for impaired postnatal linear growth (height 113.3 cm, −4.6 SDS), a bone age that was delayed by 5 years, dysmorphic facies, cognitive impairment, and central nervous system anomalies. His younger brother, presented only with growth failure at 10 months of age. Exome sequencing identified compound heterozygous variants in the gene encoding RNA polymerase III transcription initiation factor 90 kDa subunit (BRF1) in both affected siblings: a missense mutation (c.875 C > G:p.P292R) and a frameshift mutation (c.551delG:p.C184Sfs). The frameshift mutation is expected to lead to nonsense‐mediated mRNA decay (NMD) and/or to protein truncation. Expression of BRF1 with the P292R missense mutation failed to rescue yeast lacking BRF1. The findings confirm a previous report showing that biallelic mutations in BRF1 cause cerebellar–facial–dental syndrome. Our findings also help define the growth phenotype, indicating that the linear growth failure can become clinically evident before the neurological abnormalities and that a severely delayed bone age may serve as a diagnostic clue.
Clinical Endocrinology | 2015
Youn Hee Jee; Francesco S. Celi; Maureen Sampson; David B. Sacks; Alan T. Remaley; Electron Kebebew; Jeffrey Baron
The primary preoperative method for distinguishing malignant from benign thyroid nodules is fine‐needle aspiration (FNA) cytology, but it is frequently inconclusive. Midkine (MDK) is a heparin‐binding growth factor, which is overexpressed in papillary thyroid carcinoma (PTC).
Hormone Research in Paediatrics | 2017
Anenisia C. Andrade; Youn Hee Jee; Ola Nilsson
Idiopathic short stature is a common condition with a heterogeneous etiology. Advances in genetic methods, including genome sequencing techniques and bioinformatics approaches, have emerged as important tools to identify the genetic defects in families with monogenic short stature. These findings have contributed to the understanding of growth regulation and indicate that growth plate chondrogenesis, and therefore linear growth, is governed by a large number of genes important for different signaling pathways and cellular functions, including genetic defects in hormonal regulation, paracrine signaling, cartilage matrix, and fundamental cellular processes. In addition, mutations in the same gene can cause a wide phenotypic spectrum depending on the severity and mode of inheritance of the mutation.
Endocrinology and Metabolism Clinics of North America | 2017
Youn Hee Jee; Anenisia C. Andrade; Jeffrey Baron; Ola Nilsson
Short stature is a common and heterogeneous condition that is often genetic in etiology. For most children with genetic short stature, the specific molecular causes remain unknown; but with advances in exome/genome sequencing and bioinformatics approaches, new genetic causes of growth disorders have been identified, contributing to the understanding of the underlying molecular mechanisms of longitudinal bone growth and growth failure. Identifying new genetic causes of growth disorders has the potential to improve diagnosis, prognostic accuracy, and individualized management, and help avoid unnecessary testing for endocrine and other disorders.
Endocrinology | 2018
Youn Hee Jee; Jinhee Wang; Shanna Yue; Melissa Jennings; Samuel J. H. Clokie; Ola Nilsson; Julian C. Lui; Jeffrey Baron
Growth plate chondrocytes undergo sequential differentiation to form the resting zone, the proliferative zone (PZ), and the hypertrophic zone (HZ). The important role of microRNAs (miRNAs) in the growth plate was previously revealed by cartilage-specific ablation of Dicer, an enzyme essential for biogenesis of many miRNAs. To identify specific miRNAs that regulate differentiation of PZ chondrocytes to HZ chondrocytes, we microdissected individual growth plate zones from juvenile rats and performed miRNA profiling using a solution hybridization method and miRNA sequencing. Thirty-four miRNAs were differentially expressed between the PZ and the HZ, and we hypothesized that some of the miRNAs that are preferentially expressed in the PZ may promote proliferation and inhibit hypertrophic differentiation. Consistent with this hypothesis, transfection of inhibitors for four of these miRNAs (mir-369-3p, mir-374-5p, mir-379-5p, and mir-503-5p) decreased proliferation in primary epiphyseal chondrocytes. The inhibitors for three of these miRNAs (mir-374-5p, mir-379-5p, and mir-503-5p) also increased expression of multiple genes that are associated with chondrocyte hypertrophic differentiation. We next hypothesized that preferential expression of these miRNAs in the PZ is driven by the parathyroid hormone-related protein (PTHrP) concentration gradient across the growth plate. Consistent with this hypothesis, treatment of primary chondrocytes with a parathyroid hormone (PTH)/PTHrP receptor agonist, PTH1-34, increased expression of mir-374-5p, mir-379-5p, and mir-503-5p. Taken together, our findings suggest that the PTHrP concentration gradient across the growth plate induces differential expression of mir-374-5p, mir-379-5p, and mir-503-5p between the PZ and the HZ. In the PZ, the higher expression levels of these miRNAs promote proliferation and inhibit hypertrophic differentiation. In the HZ, downregulation of these miRNAs inhibits proliferation and promotes hypertrophic differentiation.
PLOS ONE | 2016
Youn Hee Jee; Samira M. Sadowski; Francesco S. Celi; Liqiang Xi; Mark Raffeld; David B. Sacks; Alan T. Remaley; Anton Wellstein; Electron Kebebew; Jeffrey Baron
Background Thyroid nodules are common, and approximately 5% of these nodules are malignant. Pleiotrophin (PTN) is a heparin-binding growth factor which is overexpressed in many cancers. The expression of PTN in papillary thyroid cancer (PTC) is unknown. Method and Findings 74 subjects (age 47 ± 12 y, 15 males) who had thyroidectomy with a histological diagnosis: 79 benign nodules and 23 PTCs (10 classic, 6 tall cell, 6 follicular variant and 1 undetermined). Fine-needle aspiration (FNA) samples were obtained ex vivo from surgically excised tissue and assayed for PTN and thyroglobulin (Tg). Immunohistochemistry (IHC) was performed on tissue sections. In FNA samples, PTN concentration normalized to Tg was significantly higher in PTC than in benign nodules (16 ± 6 vs 0.3 ± 0.1 ng/mg, p < 0.001). In follicular variant of PTC (n = 6), the PTN/Tg ratio was also higher than in benign nodules (1.3 ± 0.6 vs 0.3 ± 0.1 ng/mg, P < 0.001, respectively). IHC showed cytoplasmic localization of PTN in PTC cells. Conclusion In ex vivo FNA samples, the PTN to thyroglobulin ratio was higher in PTCs, including follicular variant PTC, than in benign thyroid nodules. The findings raise the possibility that measurement of the PTN to Tg ratio may provide useful diagnostic and/or prognostic information in the evaluation of thyroid nodules.
PLOS ONE | 2016
Youn Hee Jee; Yael Lebenthal; Piya Chaemsaithong; Gai Yan; Ivana Peran; Anton Wellstein; Roberto Romero; Jeffrey Baron
Background Midkine (MDK) and pleiotrophin (PTN) are heparin-binding growth factors that, in rodents, are highly expressed in early life and decrease to undetectable levels by adulthood. The potential roles of MDK and PTN in human growth and development are not completely elucidated. Method and Findings To delineate the role of MDK and PTN in human development, we developed high sensitivity assays to measure their concentrations in amniotic fluid (AF) at various gestational ages in both healthy and complicated pregnancies. We found that both of these growth factors could be readily measured in AF and that the concentrations were higher than most cytokines previously reported in AF. Conclusion The concentration of MDK but not that of PTN declined with gestational age. Both MDK and PTN concentrations were found to be lower in pregnancies that were complicated by chorioamnionitis at term, raising the possibility that these growth factors might be useful as markers for infection.
PLOS Biology | 2018
Julian C. Lui; Youn Hee Jee; Presley Garrison; James R. Iben; Shanna Yue; Michal Ad; Quang Nguyen; Bijal Kikani; Yoshiyuki Wakabayashi; Jeffrey Baron
Bones at different anatomical locations vary dramatically in size. For example, human femurs are 20-fold longer than the phalanges in the fingers and toes. The mechanisms responsible for these size differences are poorly understood. Bone elongation occurs at the growth plates and advances rapidly in early life but then progressively slows due to a developmental program termed “growth plate senescence.” This developmental program includes declines in cell proliferation and hypertrophy, depletion of cells in all growth plate zones, and extensive underlying changes in the expression of growth-regulating genes. Here, we show evidence that these functional, structural, and molecular senescent changes occur earlier in the growth plates of smaller bones (metacarpals, phalanges) than in the growth plates of larger bones (femurs, tibias) and that this differential aging contributes to the disparities in bone length. We also show evidence that the molecular mechanisms that underlie the differential aging between different bones involve modulation of critical paracrine regulatory pathways, including insulin-like growth factor (Igf), bone morphogenetic protein (Bmp), and Wingless and Int-1 (Wnt) signaling. Taken together, the findings reveal that the striking disparities in the lengths of different bones, which characterize normal mammalian skeletal proportions, is achieved in part by modulating the progression of growth plate senescence.