Youn Hee Nam
Kyung Hee University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youn Hee Nam.
Journal of Agricultural and Food Chemistry | 2015
Youn Hee Nam; Bin Na Hong; Isabel Rodriguez; Min Gun Ji; Keonwoo Kim; Ung-Jin Kim; Tong Ho Kang
Pancreatic islets (PIs) are damaged under diabetic conditions, resulting in decreased PI size. This study examined the regenerative effects of coffee and its components (caffeine, CFI; trigonelline, TRG; chlorogenic acid, CGA) on zebrafish larval PIs and β-cells damaged by administration of alloxan (AX). In addition, the influence of coffee and its active components on KATP channels was investigated using diazoxide (DZ) as a KATP channel activator. PI size and fluorescence intensity were significantly increased in the coffee-treated group relative to the no-treatment group (P < 0.0001). In addition, coffee exerted significant regenerative effects on pancreatic β-cells (p = 0.006). Treatment with TRG and CGA rescued PI damage, and the combination of TRG/CGA had a synergistic effect. In conclusion, the results indicate that coffee has beneficial effects on AX-damaged PIs and may also be useful as a blocker of pancreatic β-cell K(+) channels.
Journal of Ginseng Research | 2017
Youn Hee Nam; Hoa Thi Le; Isabel Rodriguez; Eun-Young Kim; Keonwoo Kim; Seo Yule Jeong; Sang Ho Woo; Yeong Ro Lee; Rodrigo Castañeda; Jineui hong; Min Gun Ji; Ung-Jin Kim; Bin Na Hong; Tae Woo Kim; Tong Ho Kang
Background 20(S)-Protopanaxadiol 20-O-D-glucopyranoside, also called compound K (CK), exerts antidiabetic effects that are mediated by insulin secretion through adenosine triphosphate (ATP)-sensitive potassium (KATP) channels in pancreatic β-cells. However, the antidiabetic effects of CK may be limited because of its low bioavailability. Methods In this study, we aimed to enhance the antidiabetic activity and lower the toxicity of CK by including it with β-cyclodextrin (CD) (CD-CK), and to determine whether the CD-CK compound enhanced pancreatic islet recovery, compared to CK alone, in an alloxan-induced diabetic zebrafish model. Furthermore, we confirmed the toxicity of CD-CK relative to CK alone by morphological changes, mitochondrial damage, and TdT-UTP nick end labeling (TUNEL) assays, and determined the ratio between the toxic and therapeutic dose for both compounds to verify the relative safety of CK and CD-CK. Results The CD-CK conjugate (EC50 = 2.158μM) enhanced the recovery of pancreatic islets, compared to CK alone (EC50 = 7.221μM), as assessed in alloxan-induced diabetic zebrafish larvae. In addition, CD-CK (LC50 = 20.68μM) was less toxic than CK alone (LC50 = 14.24μM). The therapeutic index of CK and CD-CK was 1.98 and 9.58, respectively. Conclusion The CD-CK inclusion complex enhanced the recovery of damaged pancreatic islets in diabetic zebrafish. The CD-CK inclusion complex has potential as an effective antidiabetic efficacy with lower toxicity.
Archives of Dermatological Research | 2018
Yeong Ro Lee; Ji-Hae Park; Rodrigo Castaneda Molina; Youn Hee Nam; Yeong-Geun Lee; Bin Na Hong; Nam-In Baek; Tong Ho Kang
The excrement of silkworms (Bombyx mori L.), referred to here as silkworm droppings (SDs), is used as a traditional drug in eastern medicine to treat skin diseases such as urticaria and atopy. However, the depigmentation effects of SDs have not previously been evaluated. We focused on the depigmentation effect of a methanol extract of SDs and isolated components of the extract using a zebrafish model system. (+)-Dehydrovomifoliol (M-1), (6R,7E,9R)-9-hydroxy-4,7-megastigmadien-3-one (M-2), (3S,5R,8R)-3,5-dihydroxymegastigma-6,7-dien-9-one (M-3), roseoside (M-4), and citroside A (M-5) were isolated from only SDs extract (SDE), and chemical structures were identified through spectroscopic methods. Toxicity of SDE was evaluated by assessing its effect on the viability of human fibroblast cells and the hatching rate of zebrafish embryos. In addition, the depigmentation ability of SDE and isolated constituents was evaluated using a zebrafish model. Binary threshold, histograms, and the size of the black spots on the dorsal region of zebrafish larvae were analyzed using image analysis tools. Finally, SDE is a non-toxic material and has a dose-dependent depigmentation effect in zebrafish larvae. Moreover, various doses of compounds isolated from SDE, namely, M-1 to M-5, had a depigmentation effect. In particular, M-5 inhibited melanin synthesis in melanocytes stimulated by α-melanocyte stimulating hormone (α-MSH). Together, our results suggest that SDs can be used for depigmentation purposes in health and/or cosmetic applications.
Phytomedicine | 2017
Rodrigo Castañeda; Isabel Rodriguez; Youn Hee Nam; Bin Na Hong; Tong Ho Kang
BACKGROUND Protection of cochlear function and reconstruction of neuronal networks in damaged auditory sensory structures is crucial for therapeutic treatment of diabetic hearing loss. Nerve growth factor (NGF) has been used as a novel therapeutic target to protect against the neurodegenerative effects of Diabetes Mellitus (DM). PURPOSE We aimed to evaluate the potential effect of trigonelline (TRG) on reducing auditory damage produced by DM using NGF as a potential marker. METHOD Docking simulations were carried out using Autodock Vina software and visualized using Discovery Studio. Morphological analysis of hair cells and neuromasts was performed on alloxan-induced diabetic zebrafish by fluorescence and scanning electron microscopy. Blockage of NGF receptor phosphorylation with K-252a was used to evaluate TRG and NGF action. Further assessment of NGF by ELISA on a primary culture of spiral ganglion cells was performed as a marker of neuronal function on the hearing system. Finally, auditory function was assessed in LepR(db/db) mice using auditory brainstem response (ABR) and transient evoked otoacoustic emission (TEOAE) during 8 weeks. RESULTS Docking simulations showed that TRG binds to the active site of NGF through molecular interactions with Lysine88 (Lys88) and Tyrosine52 (Tyr52). TRG treatment significantly reduced hair cell loss and neuromast damage in diabetic zebrafish (P < .05). Further evaluation revealed a significant increase in the number of neuromasts after NGF administration (P < .001). TRG and NGF action was suppressed during blockage of NGF receptor phosphorylation. Moreover, spiral ganglion cells revealed significant elevation on NGF values after TRG treatment (P < .05). In vivo evaluation of LepR(db/db) mice revealed a significant reduction in the auditory damage produced under diabetic progression, characterized by reduced ABR hearing threshold shifts and increased signal-to-noise ratio in TEOAE (P < .05). CONCLUSIONS This study suggests that the enhanced hearing function produced by TRG may be mediated by NGF, providing a potential therapeutic strategy for diabetic hearing loss.
Neuroscience Letters | 2017
Bin Na Hong; Youn Hee Nam; Sang Ho Woo; Tong Ho Kang
Recently, many studies have reported that sensorineural hearing impairment related to neurological disorders may be caused by diabetes mellitus. However, to date, only a small number of studies have investigated the treatment of sensorineural hearing impairment. In the present study, the effects of chlorogenic acid on diabetic auditory pathway impairment were evaluated by neuro-electrical physiological measurements and morphological investigations. We have shown that CA efficiently prevents the progression of auditory pathway dysfunction caused by DM using auditory brainstem responses and auditory middle latency responses in mice. Additionally, using transient-evoked otoacoustic emissions measurement and scanning electron microscope observation of hair cells in DM mice, we found that CA may aid in the recovery from outer hair cell and otic hair cell damage. In conclusion, CA has beneficial effects for the management of diabetic sensorineural auditory dysfunction.
Molecules | 2018
Jung-Hwan Ko; Youn Hee Nam; Sun-Woo Joo; Hyoung-Geun Kim; Yeong-Geun Lee; Tong Ho Kang; Nam-In Baek
Malva verticillata (Cluster mallow), a leafy vegetable that has been popular in East Asia for a long time, has also been used in herbal teas and medicines. The aqueous fraction of the aerial parts of Malva verticillata, exhibiting a very high quantity of flavonoids compared to the EtOAc and n-BuOH fractions, exhibited significant recovery effects on pancreatic islets damaged by alloxan in zebrafish larvae. Thus, the bioactive components responsible for this anti-diabetic activity were investigated. A new flavonoid glucuronide (1) and five known flavonoids were isolated from the aqueous fraction. Based on several spectroscopic methods, compound 1 was identified to be nortangeretin-8-O-β-d-glucuronide, and was named malvaflavone A. The A-ring of compound 1 had a 5,6,7,8-tetrahydroxy moiety, which rarely occurs in plant systems. Also 8-O-glucuronide attached to the flavonoid moiety was rarely occurred in plant system. Compounds 1, 3, 4, and 6 significantly improved the pancreatic islet size in zebrafish at 0.1 μM, and compounds 1 and 6 were found to block β-cell K+ channels in experiments with diazoxide. In ABTS, ORAC, and SOD assays, compounds 1–5 exhibited high anti-oxidant activities compared with quercetin and BHA (positive controls), indicating that the 8-O-glucuronide attached to the flavonoid moiety is a key structure for the expression of anti-oxidant activity. This is the first report of the isolation of compounds 1–6 from M. verticillata as well evaluated for anti-diabetic and anti-oxidant ativities.
Journal of Ginseng Research | 2018
Youn Hee Nam; Hyo Won Moon; Yeong Ro Lee; Eun-Young Kim; Isabel Rodriguez; Seo Yule Jeong; Rodrigo Castañeda; Ji-Ho Park; Se-Young Choung; Bin Na Hong; Tong Ho Kang
Background Diabetic sensorineural damage is a complication of the sensory neural system, resulting from long-term hyperglycemia. Red ginseng (RG) has shown efficacy for treatment of various diseases, including diabetes mellitus; however, there is little research about its benefit for treating sensorineural damage. Therefore, we aim to evaluate RG efficacy in alloxan-induced diabetic neuromast (AIDN) zebrafish. Methods In this study, we developed and validated an AIDN zebrafish model. To assess RG effectiveness, we observed morphological changes in live neuromast zebrafish. Also, zebrafish has been observed to have an ultrastructure of hair-cell cilia under scanning electron microscopy. Thus, we recorded these physiological traits to assess hair cell function. Finally, we confirmed that RG promoted neuromast recovery via nerve growth factor signaling pathway markers. Results First, we established an AIDN zebrafish model. Using this model, we showed via live neuromast imaging that RG fostered recovery of sensorineural damage. Damaged hair cell cilia were recovered in AIDN zebrafish. Furthermore, RG rescued damaged hair cell function through cell membrane ion balance. Conclusion Our data suggest that RG potentially facilitates recovery in AIDN zebrafish, and its mechanism seems to be promotion of the nerve growth factor pathway through increased expression of topomyosin receptor kinase A, transient receptor potential channel vanilloid subfamily type 1, and mitogen-activated protein kinase phosphorylation.
Biomedicine & Pharmacotherapy | 2017
Isabel Rodriguez; Bin Na Hong; Youn Hee Nam; Eun-Young Kim; Geun Ha Park; Min Gun Ji; Tong Ho Kang
In noise-induced hearing loss (NIHL), noise exposure damages cochlear sensory hair cells, which lack the capacity to regenerate. Following noise insult, intense metabolic activity occurs, resulting in a cochlear free radical imbalance. Oxidative stress and antioxidant enzyme alterations, including lipoxygenase upregulation, have been linked to chronic inflammation, which contributes to hearing impairment. We previously proposed Scutellaria baicalensis (SB) extract as an alternative therapeutic for preventing NIHL and attributed its pharmacological effects to baicalein. Although baicalein was most effective, its concentration in SB extract is much lower compared to baicalin. In this study, we performed enzymatic bioconversion using an Sumizyme (SM) enzyme to increase baicalein concentration in SB extract and consequently improve its therapeutic efficacy. HPLC analysis revealed that baicalein concentration in SB extract after bioconversion (BSB) was significantly increased. Moreover, BSB-treated mice exhibited significantly improved auditory function compared with control mice and tended to have improved auditory function compared with SB-treated mice. We also demonstrated that BSB effectively stimulates hair cell regeneration compared to SB that did not achieve the same effect in a zebrafish model. Finally, when compared the abilities of SB and BSB to inhibit lipoxygenase (LOX), BSB showed a greater efficacy. Cumulatively, our data suggest that BSB exhibits improved pharmacological properties for treating NIHL compared with SB.
Planta Medica | 2016
Eun-Hee Kim; Youn Hee Nam; Tong Ho Kang; Jong Hwan Kwak
Planta Medica | 2016
Y Jeon; Youn Hee Nam; Tong Ho Kang; Jong Hwan Kwak