Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young Bin Hong is active.

Publication


Featured researches published by Young Bin Hong.


Pancreas | 2010

Nuclear factor (erythroid-derived 2)-like 2 regulates drug resistance in pancreatic cancer cells.

Young Bin Hong; Hyo Jin Kang; Sun Young Kwon; Hee Jeong Kim; Kun Young Kwon; Chi Heum Cho; Jong-Min Lee; Bhaskar V.S. Kallakury; Insoo Bae

Objective: To investigate the molecular basis of drug resistance in pancreatic cancer. Methods: The expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) levels in pancreatic cancer tissues and cell lines was analyzed. Clinical relevance between Nrf2 activation and drug resistance was demonstrated by measuring cell viability after Nrf2 and adenosine 5&vprime;-triphosphate-binding cassette, subfamily G member 2 (ABCG2) regulation by overexpression or knock-down of these genes. Activity of ABCG2 was measured by Hoechst 33342 staining. Results: Abnormally elevated Nrf2 protein levels were observed in pancreatic cancer tissues and cell lines relative to normal pancreatic tissues. Increasing Nrf2 protein levels either by overexpression of exogenous Nrf2 or by activating endogenous Nrf2 resulted in increased drug resistance. Conversely, a reduction in endogenous Nrf2 protein levels or inactivation of endogenous Nrf2 resulted in decreased drug resistance. These changes in drug resistance or sensitivity were also positively correlated to the expression levels of Nrf2 downstream genes. Similarly, the expression of ABCG2 was correlated with drug resistance. Conclusions: Because the intrinsic drug resistance of pancreatic cancers is, in part, due to abnormally elevated Nrf2 protein levels, further research on regulating Nrf2 activity may result in the development of novel pancreatic cancer therapies.Abbreviations: Nrf2 - nuclear factor (erythroid-derived 2)-like 2, ABCG2 - adenosine 5&vprime;-triphosphate-binding cassette, subfamily G member 2, MRP - multidrug resistance protein


Journal of Biological Chemistry | 2010

CR6-interacting factor 1 (Crif1) regulates NF-E2-related factor-2 (Nrf2) protein stability by proteasome-mediated degradation

Hyo Jin Kang; Young Bin Hong; Hee Jeong Kim; Insoo Bae

Free radicals generated by oxidative stress cause damage that can contribute to numerous chronic diseases. Mammalian cells respond to this damage by increased transcription of cytoprotective phase II genes, which are regulated by NRF2. Previously, it has been shown that NRF2 protein levels increase after oxidative stress because its negative regulator, KEAP1, loses its ability to bind NRF2 and cause its proteasome-mediated degradation during oxidative stress. Here, we show that CRIF1, a protein previously known as cell cycle regulator and transcription cofactor, is also able to negatively regulate NRF2 protein stability. However, in contrast to KEAP1, which regulates NRF2 stability only under normal reducing conditions, CRIF1 regulates NRF2 stability and its target gene expression under both reducing and oxidative stress conditions. Thus, CRIF1-NRF2 interactions and their consequences are redox-independent. In addition, we found that CRIF1, unlike KEAP1 (which only interacts with N-terminal region of NRF2), physically interacts with both N- and C-terminal regions of NRF2 and promotes NRF2 ubiquitination and subsequent proteasome-mediated NRF2 protein degradation.


Journal of Korean Medical Science | 2006

Upregulation of proinflammatory cytokines in the fetal brain of the Gaucher mouse.

Young Bin Hong; Eun Young Kim; Sung-Chul Jung

Gaucher disease is caused by a deficiency of glucocerebrosidase. Patients with Gaucher disease are divided into three major phenotypes: chronic nonneuronopathic, acute neuronopathic, and chronic neuronopathic, based on symptoms of the nervous system, the severity of symptoms, and the age of disease onset. The characteristics of patients with acute neuronopathic- and chronic neuronopathic type Gaucher disease include oculomotor abnormalities, bulbar signs, limb rigidity, seizures and occasional choreoathetoid movements, and neuronal loss. However, the mechanisms leading to the neurodegeneration of this disorder remain unknown. To investigate brain dysfunction in Gaucher disease, we studied the possible role of inflammation in neurodegeneration during development of Gaucher disease in a mouse model. Elevated levels of the proinflammatory cytokines, IL-1α, IL-1β, IL-6, and TNF-α, were detected in the fetal brains of Gaucher mice. Moreover, the levels of secreted nitric oxide and reactive oxygen species in the brains of Gaucher mice were higher than in wild-type mice. Thus, accumulated glucocerebroside or glucosylsphingosine, caused by glucocerebrosidase deficiency, may mediate brain inflammation in the Gaucher mouse via the elevation of proinflammatory cytokines, nitric oxide, and reactive oxygen species.


Neurology | 2013

SET binding factor 1 (SBF1) mutation causes Charcot-Marie-Tooth disease type 4B3

Khriezhanuo Nakhro; Jin-Mo Park; Young Bin Hong; Ji Hoon Park; Soo Hyun Nam; Bo Ram Yoon; Jeong Hyun Yoo; Heasoo Koo; Sung-Chul Jung; Hyung-Lae Kim; Ji Yon Kim; Kyoung-Gyu Choi; Byung-Ok Choi; Ki Wha Chung

Objective: To identify the genetic cause of an autosomal recessive demyelinating Charcot-Marie-Tooth disease type 4B (CMT4B) family. Methods: We enrolled 14 members of a Korean family in which 3 individuals had demyelinating CMT4B phenotype and obtained distal sural nerve biopsies from all affected participants. We conducted exome sequencing on 6 samples (3 affected and 3 unaffected individuals). Results: One pair of heterozygous missense mutations in the SET binding factor 1 (SBF1) gene (22q13.33), also called MTMR5, was identified as the underlying cause of the CMT4B family illness. Clinical phenotypes of affected study participants with CMT4B were similar, to some extent, to patients with CMT4B1 and CMT4B2. We found a similar loss of large myelinated fibers and focally folded myelin sheaths in our patients, but the actual number of myelinated fibers was different from CMT4B1 and CMT4B2. Conclusions: We suggest that the compound heterozygous mutations in SBF1 are the underlying causes of a novel CMT4B subtype, designated as CMT4B3. We believe that this study will lead to mechanistic studies to discover the function of SBF1 and to the development of molecular diagnostics for CMT disease.


JAMA Neurology | 2013

Proximal dominant hereditary motor and sensory neuropathy with proximal dominance association with mutation in the TRK-fused gene.

Sang-Soo Lee; Hye Jin Lee; Jin-Mo Park; Young Bin Hong; Kee-Duk Park; Jeong Hyun Yoo; Heasoo Koo; Sung-Chul Jung; Hyung Soon Park; Ji Hyun Lee; Min Goo Lee; Young Se Hyun; Khriezhanou Nakhro; Ki Wha Chung; Byung-Ok Choi

IMPORTANCE Hereditary motor and sensory neuropathy with proximal dominance (HMSN-P) has been reported as a rare type of autosomal dominant adult-onset Charcot-Marie-Tooth disease. HMSN-P has been described only in Japanese descendants since 1997, and the causative gene has not been found. OBJECTIVES To identify the genetic cause of HMSN-P in a Korean family and determine the pathogenic mechanism. DESIGN Genetic and observational analysis. SETTING Translational research center for rare neurologic disease. PARTICIPANTS Twenty-eight individuals (12 men and 16 women) from a Korean family with HMSN-P. MAIN OUTCOME MEASURES Whole-exome sequencing, linkage analysis, and magnetic resonance imaging. RESULTS Through whole-exome sequencing, we revealed that HMSN-P is caused by a mutation in the TRK-fused gene (TFG). Clinical heterogeneities were revealed in HMSN-P between Korean and Japanese patients. The patients in the present report showed faster progression of the disease compared with the Japanese patients, and sensory nerve action potentials of the sural nerve were lost in the early stages of the disease. Moreover, tremor and hyperlipidemia were frequently found. Magnetic resonance imaging of the lower extremity revealed a distinct proximal dominant and sequential pattern of muscular involvement with a clearly different pattern than patients with Charcot-Marie-Tooth disease type 1A. Particularly, endoneural blood vessels revealed marked narrowing of the lumen with swollen vesicular endothelial cells. CONCLUSIONS AND RELEVANCE The underlying cause of HMSN-P proves to be a mutation in TFG that lies on chromosome 3q13.2. This disease is not limited to Japanese descendants, and marked narrowing of endoneural blood vessels was noted in the present study. We believe that TFG can affect the peripheral nerve tissue.


Scientific Reports | 2015

HER2 confers drug resistance of human breast cancer cells through activation of NRF2 by direct interaction

Hyo Jin Kang; Yong Weon Yi; Young Bin Hong; Hee Jeong Kim; Young-Joo Jang; Yeon-Sun Seong; Insoo Bae

Overexpression and/or activation of HER2 confers resistance of cancer cells to chemotherapeutic drugs. NRF2 also gives drug resistance of cancer cells through induction of detoxification and/or drug efflux proteins. Although several upstream effectors of NRF2 overlapped with the downstream molecules of HER2 pathway, no direct link between HER2 and NRF2 has ever been established. Here, we identified that co-expression of a constitutively active HER2 (HER2CA) and NRF2 increased the levels of NRF2 target proteins, HO-1 and MRP5. We also identified HER2CA activated the DNA-binding of NRF2 and the antioxidant response element (ARE)-mediated transcription in an NRF2-dependent manner. In addition, NRF2 and HER2CA cooperatively up-regulated the mRNA expression of various drug-resistant and detoxifying enzymes including GSTA2, GSTP1, CYP3A4, HO-1, MRP1, and MRP5. We also demonstrated that NRF2 binds to HER2 not only in transiently transfected HEK293T cells but also in HER2-amplified breast cancer cells. Functionally, overexpression of HER2CA gave resistance of MCF7 breast cancer cells to either paraquat or doxorubicin. Overexpression of dominant negative NRF2 (DN-NRF2) reduced the HER2CA-induced resistance of MCF7 cells to these agents. Taken together, these results suggest that active HER2 binds and regulates the NRF2-dependent transcriptional activation and induces drug resistance of cancer cells.


Toxicology Letters | 2012

Bioactive food components prevent carcinogenic stress via Nrf2 activation in BRCA1 deficient breast epithelial cells.

Hyo Jin Kang; Young Bin Hong; Hee Jeong Kim; Antai Wang; Insoo Bae

Although BRCA1 is the most prevalent genetic factor in breast cancer, the pathologic mechanism of tumorigenesis caused by its deficiency has not been elucidated. We have previously demonstrated that BRCA1 can modulate responses to xenobiotic stress by regulating expression of genes involved in metabolic activation, detoxification and antioxidant reactions. In this study, we examined whether BRCA1 deficiency is more vulnerable to xenobiotic stress by employing an in vitro cell model system. Benzo[a]pyrene (B[a]P), used as a xenobiotic insult, increased intracellular reactive oxygen species (ROS) levels in breast epithelial cells. Accumulation of ROS upon B[a]P exposure was significantly augmented by abrogation of BRCA1 compared to the control. Overexpression of Nrf2 in BRCA1 deficient cells reduced elevated ROS to the control levels. Bioactive food components such as sulforaphane (SFN) and resveratrol (RSV) significantly reduced B[a]P-induced ROS accumulation regardless of BRCA1 presence. In addition, these bioactive food components increased Nrf2 levels and Nrf2 transcriptional activity, which led to attenuation of B[a]P-induced DNA damages. Likewise, incubation with bioactive food components reduced B[a]P-mediated DNA damage in BRCA1 deficient cells. In conclusion, we demonstrated that the lack of BRCA1 renders cells more susceptible to ROS-induced DNA damage, which may eventually result in tumorigenesis, and that administration of Nrf2-activating bioactive food components can reduce those risks.


International Journal of Oncology | 2014

Inhibition of NRF2 by PIK-75 augments sensitivity of pancreatic cancer cells to gemcitabine

Hong-Quan Duong; Yong Weon Yi; Hyo Jin Kang; Young Bin Hong; Wenxi Tang; Antai Wang; Yeon-Sun Seong; Insoo Bae

We describe the potential benefit of PIK-75 in combination of gemcitabine to treat pancreatic cancer in a preclinical mouse model. The effect of PIK-75 on the level and activity of NRF2 was characterized using various assays including reporter gene, quantitative PCR, DNA-binding and western blot analyses. Additionally, the combinatorial effect of PIK-75 and gemcitabine was evaluated in human pancreatic cancer cell lines and a xenograft model. PIK-75 reduced NRF2 protein levels and activity to regulate its target gene expression through proteasome-mediated degradation of NRF2 in human pancreatic cancer cell lines. PIK-75 also reduced the gemcitabine-induced NRF2 levels and the expression of its downstream target MRP5. Co-treatment of PIK-75 augmented the antitumor effect of gemcitabine both in vitro and in vivo. Our present study provides a strong mechanistic rationale to evaluate NRF2 targeting agents in combination with gemcitabine to treat pancreatic cancers.


Toxicological Sciences | 2011

Detoxification: A Novel Function of BRCA1 in Tumor Suppression?

Hyo Jin Kang; Young Bin Hong; Hee Jeong Kim; Olga Rodriguez; Raghu G. Nath; Elena M. Tilli; Christopher Albanese; Fung-Lung Chung; Sang Hoon Kwon; Insoo Bae

Our studies found that BRCA1 levels negatively correlate with DNA adducts induced by Benzo(a)pyrene (BaP). Pulse-chase experiments showed that the increase in BaP-induced DNA adducts in BRCA1 knockdown cells may not be associated with BRCA1’s function in nucleotide excision repair activity; rather, it may be associated with its function in modulating transcriptional regulation. BRCA1 knockdown in MCF-10A cells significantly attenuated the induction of CYP1A1 following BaP treatment indicating that the increase in BaP-induced adducts in BRCA1 knockdown cells is not CYP1A1 dependent. However, our study shows that BRCA1 defective cells may still be able to biotransform BaP by regulating other CYP enzymes, including CYP1B1. Knockdown of BRCA1 also severely affected the expression levels of two types of uridine diphosphate glucorunyltransferase (UGT1A1 and UGT1A9) and NRF2. Both UGTs are known as BaP-specific detoxification enzymes, and NRF2 is a master regulator of antioxidant and detoxification genes. Thus, we concluded that the increased amount of BaP-induced DNA adducts in BRCA1 knockdown cells is strongly associated with its loss of functional detoxification. Chromatin immunoprecipitation assay revealed that BRCA1 is recruited to the promoter/enhancer sequences of UGT1A1, UGT1A9, and NRF2. Regulation of UGT1A1 and UGT1A9 expression showed that the induction of DNA adducts by BaP is directly affected by their expression levels. Finally, overexpression of UGTs, NRF2, or ARNT significantly decreased the amount of BaP-induced adducts in BRCA1-deficient cells. Overall, our results suggest that BRCA1 protects cells by reducing the amount of BaP-induced DNA adducts possibly via transcriptional activation of detoxification gene expression.


Experimental and Molecular Medicine | 2006

Downregulation of neurotrophic factors in the brain of a mouse model of Gaucher disease; implications for neuronal loss in Gaucher disease.

Eun Young Kim; Young Bin Hong; Sang Hee Go; Beobyi Lee; Sung-Chul Jung

Gaucher disease is a glycosphingolipid storage disease caused by deficiency of glucocerebrosidase, resulting in the accumulation of glucosylceramide in lysosomes. The neuronopathic forms of this disease are associated with neuronal loss and neurodegeneration. However, the pathophysiological mechanisms leading to prenatal and neonatal death remain uncharacterized. To investigate brain dysfunction in Gaucher disease, we studied the effects of neurotrophic factors during development in a mouse model of Gaucher disease. The expression of brain-derived neurotrophic factor and nerve growth factor was reduced in the cerebral cortex, brainstem, and cerebellum of Gaucher mice, compared with that in wild-type mice. Extracellular signal-regulated kinase (ERK) 1/2 expression was downregulated in neurons from Gaucher mice and correlated with a decreased number of neurons. These results suggest that a reduction in neurotrophic factors could be involved in neuronal loss in Gaucher disease.

Collaboration


Dive into the Young Bin Hong's collaboration.

Top Co-Authors

Avatar

Insoo Bae

Georgetown University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin-Mo Park

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Ki Wha Chung

Kongju National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge