Young-Bin Oh
Chonbuk National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Young-Bin Oh.
American Journal of Physiology-heart and Circulatory Physiology | 2012
Amin Shah; Young-Bin Oh; Sun Hwa Lee; Jung Min Lim; Suhn Hee Kim
Angiotensin-(1-7) [ANG-(1-7)] plays a counterregulatory role to angiotensin II in the renin-angiotensin system. In trained spontaneous hypertensive rats, Mas expression and protein are upregulated in ventricular tissue. Therefore, we examined the role of ANG-(1-7) on cardiac hemodynamics, cardiac functions, and cardiac remodeling in trained two-kidney one-clip hypertensive (2K1C) rats. For this purpose, rats were divided into sedentary and trained groups. Each group consists of sham and 2K1C rats with and without ANG-(1-7) infusion. Swimming training was performed for 1 h/day, 5 days/wk for 4 wk following 1 wk of swimming training for acclimatization. 2K1C rats showed moderate hypertension and left ventricular hypertrophy without changing left ventricular function. Chronic infusion of ANG-(1-7) attenuated hypertension and cardiac hypertrophy only in trained 2K1C rats but not in sedentary 2K1C rats. Chronic ANG-(1-7) treatment significantly attenuated increases in myocyte diameter and cardiac fibrosis induced by hypertension in only trained 2K1C rats. The Mas receptor, ANG II type 2 receptor protein, and endothelial nitric oxide synthase phosphorylation in ventricles were upregulated in trained 2K1C rats. In conclusion, chronic infusion of ANG-(1-7) attenuates hypertension in trained 2K1C rats.
American Journal of Physiology-heart and Circulatory Physiology | 2010
Amin Shah; Rukhsana Gul; Kuichang Yuan; Shan Gao; Young-Bin Oh; Uh-Hyun Kim; Suhn Hee Kim
Angiotensin-(1-7) [ANG-(1-7)], one of the bioactive peptides produced in the renin-angiotensin system, plays a pivotal role in cardiovascular physiology by providing a counterbalance to the function of ANG II. Recently, it has been considered as a potential candidate for therapeutic use in the treatment of various types of cardiovascular diseases. The aim of the present study is to explain the modulatory role of ANG-(1-7) in atrial natriuretic peptide (ANP) secretion and investigate the functional relationship between two peptides to induce cardiovascular effects using isolated perfused beating rat atria and a cardiac hypertrophied rat model. ANG-(1-7) (0.01, 0.1, and 1 muM) increased ANP secretion and ANP concentration in a dose-dependent manner at high atrial pacing (6.0 Hz) with increased cGMP production. However, at low atrial pacing (1.2 Hz), ANG-(1-7) did not cause changes in atrial parameters. Pretreatment with an antagonist of the Mas receptor or with inhibitors of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), or nitric oxide synthase blocked the augmentation of high atrial pacing-induced ANP secretion by ANG-(1-7). A similar result was observed with the inhibition of the Na(+)/H(+) exchanger-1 and Ca(2+)/calmodulin-dependent kinase II (CaMKII). ANG-(1-7) did not show basal intracellular Ca(2+) signaling in quiescent atrial myocytes. In an in vivo study using an isoproterenol-induced cardiac hypertrophy animal model, an acute infusion of ANG-(1-7) increased the plasma concentration of ANP by twofold without changes in blood pressure and heart rate. A chronic administration of ANG-(1-7) increased the plasma ANP level and attenuated isoproterenol-induced cardiac hypertrophy. The antihypertrophic effect was abrogated by a cotreatment with the natriuretic peptide receptor-A antagonist. These results suggest that 1) ANG-(1-7) increased ANP secretion at high atrial pacing via the Mas/PI3K/Akt pathway and the activation of Na(+)/H(+) exchanger-1 and CaMKII and 2) ANG-(1-7) decreased cardiac hypertrophy which might be mediated by ANP.
Peptides | 2012
Young-Bin Oh; Jong Hun Kim; Byung Mun Park; Byung Hyun Park; Suhn Hee Kim
Angiotensin-(1-7) [Ang-(1-7)] plays a beneficial role in cardiovascular physiology by providing a counterbalance to the function of angiotensin II (Ang II). Although Ang II has been shown to be an adipokine secreted by adipocyte and affect lipid metabolism, the role of Ang-(1-7) in adipose tissue remains to be clarified. The aim of the present study was to investigate whether Ang-(1-7) affects lipid metabolism in adipose tissue. Ang-(1-7) increased glycerol release from primary adipocytes in a dose-dependent manner. A lipolytic effect of Ang-(1-7) was attenuated by pretreatment with A-779, a Mas receptor blocker and with an inhibitor of phosphoinositol 3-kinase (PI3K), or eNOS. However, losartan and PD123319 did not cause any change in Ang-(1-7)-induced lipolysis. Ang-(1-7)-induced lipolysis had an addictive effect with isoproterenol. In normal rats, chronic intake of captopril for 4 wks decreased body weight gain and the amount of adipose tissue and increased plasma Ang-(1-7) level. These effects were attenuated by administration of A-779. The levels of Mas receptor and phosphorylation of hormone-sensitive lipase (p-HSL) were significantly increased by treatment with captopril and these captopril-mediated effects were attenuated by the administration of A-779. There was no difference in diameter of adipocytes among sham, captopril- and captopril+A-779-treated groups. The similar effects of captopril on body weight, expression of Mas receptor, and p-HSL were observed in Ang-(1-7)-treated rats. These results suggest that captopril intake decreased body weight gain partly through Ang-(1-7)/Mas receptor/PI3K pathway.
Peptides | 2011
Young-Bin Oh; Shan Gao; Amin Shah; Jong Hun Kim; Woo Hyun Park; Suhn Hee Kim
Angiotensin II (Ang II) is released by stretch of cardiac myocytes and has paracrine and autocrine effects on cardiac myocytes and fibroblasts. However, the direct effect of Ang II on the secretion of atrial natriuretic peptide (ANP) is unclear. The aim of the present study is to test whether Ang II affects stretch-induced ANP secretion. The isolated perfused beating atria were used from control and two-kidney one-clip hypertensive (2K1C) rats. The volume load was achieved by elevating the height of outflow catheter connected with isolated atria from 5cmH(2)O to 7.5cmH(2)O. Atrial stretch by volume load caused increases in atrial contractility by 60% and in ANP secretion by 100%. Ang II suppressed stretch-induced ANP secretion and tended to increase atrial contractility whereas losartan stimulated stretch-induced ANP secretion. Neither PD123319 nor A779 had direct effect on stretch-induced ANP secretion. The suppressive effect of Ang II on stretch-induced ANP secretion was blocked by the pretreatment of losartan but not by the pretreatment of PD123319 or A779. In hypertrophied atria from 2K1C rats, stretch-induced ANP concentration attenuated and atrial contractility augmented. The response of stretch-induced ANP secretion to Ang II and losartan augmented. The expression of AT1 receptor protein and mRNA increased but AT2 and Mas receptor mRNA did not change in 2K1C rat atria. Therefore, we suggest that Ang II generated endogenously by atrial stretch suppresses stretch-induced ANP secretion through the AT1 receptor and alteration of Ang II effect in 2K1C rat may be due to upregulation of AT1 receptor.
Peptides | 2013
Byung Mun Park; Young-Bin Oh; Shan Gao; Seung Ah Cha; Kyung Pyo Kang; Suhn Hee Kim
Angiotensin III (Ang III) is metabolized from Ang II by aminopeptidase (AP) A and in turn, Ang III is metabolized to Ang IV by APN. Ang III is known to have a similar effect to Ang II on aldosterone secretion, but the effect of Ang III on atrial natriuretic peptide (ANP) secretion from cardiac atria is not known. The aim of the present study is to define the effect of Ang III on ANP secretion and its receptor subtype using isolated perfused beating atria. The volume load was achieved by elevating the height of outflow catheter connected with isolated atria from 5 cmH2O to 7.5 cmH2O. Atrial stretch by volume load increased atrial contractility and ANP secretion. Ang III stimulated stretch-induced ANP secretion in a dose-dependent manner without change in atrial contractility. The stimulated effect of Ang III (1 μM) on stretch-induced ANP secretion was blocked by the pretreatment of Ang II type 2 (AT2) receptor antagonist but not by AT1 or Mas receptor antagonist. Pretreatment with inhibitor of phosphoinositide 3-kinase (PI3K), Akt, nitric oxide synthase, soluble guanylyl cyclase, or protein kinase G (PKG) attenuated Ang III-stimulated ANP secretion. When Ang III (40 nM) or Ang II (4nM) was infused for 10 min into anesthetized rats, mean arterial pressure was increased about 10%. However, Ang III increased plasma ANP level by 35.81±10.19% but Ang II decreased plasma ANP level by 30.41±7.27%. Therefore, we suggest that Ang III, opposite to Ang II, stimulated stretch-induced ANP secretion through AT2 receptor/PI3K/Akt/nitric oxide/PKG pathway.
Experimental and Molecular Medicine | 2013
Young-Bin Oh; Min Ahn; Sang-Myeong Lee; Hyoung-Won Koh; Sun-Hwa Lee; Suhn Hee Kim; Byung-Hyun Park
Recent studies have documented that Janus-activated kinase (JAK)–signal transducer and activator of transcription (STAT) pathway can modulate the apoptotic program in a myocardial ischemia/reperfusion (I/R) model. To date, however, limited studies have examined the role of JAK3 on myocardial I/R injury. Here, we investigated the potential effects of pharmacological JAK3 inhibition with JANEX-1 in a myocardial I/R model. Mice were subjected to 45 min of ischemia followed by varying periods of reperfusion. JANEX-1 was injected 1 h before ischemia by intraperitoneal injection. Treatment with JANEX-1 significantly decreased plasma creatine kinase and lactate dehydrogenase activities, reduced infarct size, reversed I/R-induced functional deterioration of the myocardium and reduced myocardial apoptosis. Histological analysis revealed an increase in neutrophil and macrophage infiltration within the infarcted area, which was markedly reduced by JANEX-1 treatment. In parallel, in in vitro studies where neutrophils and macrophages were treated with JANEX-1 or isolated from JAK3 knockout mice, there was an impairment in the migration potential toward interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1), respectively. Of note, however, JANEX-1 did not affect the expression of IL-8 and MCP-1 in the myocardium. The pharmacological inhibition of JAK3 might represent an effective approach to reduce inflammation-mediated apoptotic damage initiated by myocardial I/R injury.
Peptides | 2010
Amin Shah; Young-Bin Oh; Gao Shan; Chang Ho Song; Byung-Hyun Park; Suhn Hee Kim
The alteration in osmolarity challenges cell volume regulation, a vital element for cell survival. Hyposmolarity causes an increase in cell volume. Recently, it has been reported that the renin-angiotensin system (RAS) plays a role in cell volume regulation. We investigated the effect of angiotensin-(1-7) [Ang-(1-7)] on hyposmolarity-induced atrial natriuretic peptide (ANP) secretion in normal and diabetic (DM) rat atria and modulation of the effect of Ang-(1-7) by the Na(+)-K(+) pump. Using isolated control rat atria, we observed that perfusion of hyposmotic solution into the atria increased ANP secretion. When Ang-(1-7) [0.1 microM or 1 microM] was perfused in a hyposmolar solution, it decreased the hyposmolarity-induced ANP secretion in a dose-dependent manner. This effect of Ang-(1-7) could be mediated by the Na(+)-K(+) pump, since ouabain, an Na(+)-K(+) pump inhibitor, significantly decreased the effect of Ang-(1-7) on hyposmolarity-induced ANP secretion. In contrast, N(omega) Nitro-l-arginine methyl ester hydrochloride (l-NAME) did not modify the effect of Ang-(1-7) on the hyposmolarity-induced ANP secretion. Interestingly, the ANP secretion was increased robustly by the perfusion of the hyposmolar solution in the DM atria, as compared to the control atria. However, the inhibitory effect of Ang-(1-7) on the hyposmolarity-induced ANP secretion was not observed in the DM atria. In the DM atria, atrial contractility was significantly increased. Taken together, we concluded that Ang-(1-7) attenuated hyposmolarity-induced ANP secretion via the Na(+)-K(+) pump and a lack of Ang-(1-7) response in DM atria may partly relate to change in Na(+)-K(+) pump activity.
Peptides | 2011
Young-Bin Oh; Shan Gao; Jung Min Lim; Hyung-Tae Kim; Byung-Hyun Park; Suhn Hee Kim
Caveolae may act as mechanosensors and function as binding sites for calcium ions. The intracaveolar localization of atrial natriuretic peptide (ANP) derived from the direct interaction of atrial granules with caveolae has been demonstrated. The aim of this study was to define the effect of caveolae on ANP secretion induced by stretch and angiotensin II. The isolated perfused beating atria from Sprague-Dawley rats were used. To disrupt caveolae, 10mM methyl-β-cyclodextrin (MbCD) was applied for 1h and the number of caveoli were markedly decreased. MbCD increased basal ANP secretion and atrial diastolic pressure. The molecular profile of ANP in perfusate from control atria showed mainly one major peak corresponded to synthetic ANP whereas that from MbCD-treated atria showed two major immunoreactive peaks corresponded to synthetic rat ANP and proANP. High atrial stretch induced by elevating the height of outflow catheter from 5 cm H₂O to 7.5 cm H₂O increased atrial contractility and ANP secretion. The response of ANP secretion to high stretch was attenuated in MbCD-pretreated atria. Pretreatment with MbCD abolished angiotensin II-induced suppression and losartan-induced stimulation of ANP secretion. However, the effect of angiotenisin (1-7) on ANP secretion was not altered by MbCD treatment. The expression of angiotensin II type 1 receptor protein was reduced by MbCD treatment. These data suggest that caveolae are essential for angiotensin II type 1 receptor-mediated ANP secretion and relate to the processing of proANP.
Peptides | 2010
Kuichang Yuan; Sun Young Kim; Young-Bin Oh; Jiahua Yu; Amin Shah; Byung Hyun Park; Suhn Hee Kim
OBJECTIVES The aim of the present studywas to examine the question of whether the atrial natriuretic peptide (ANP) system is altered by endothelial nitric-oxide synthase (eNOS). METHODS Male eNOS-deficient mice (eNOS-/-) and wild type control mice (eNOS+/+, C57B1/6J) were used. Blood pressure was measured in anesthetized mice by tail cuff plethysmography and renal function was measured. Expression of ANP, natriuretic peptide receptor (NPR)-A, NPR-C, and tonicity-responsive enhancer binding protein (TonEBP) mRNA was determined by real-time PCR. Localization of (125)I-ANP binding sites was measured using in vitro autoradiography. RESULTS In eNOS-/- mice, systolic blood pressure increased and left ventricular hypertrophy was observed. Urine volume and osmolarity did not change. Expression of ANP markedly increased in the heart and kidney of eNOS-/- mice. Expression of NPR-A and NPR-C increased in the heart and tended to increase in the kidney of eNOS-/- mice. In the renal medulla in particular, increased expression of NPR-C was more prominent. Expression of TonEBP mRNA was markedly decreased in the renal medulla, but not in the renal cortex. Maximum binding capacity (B(max)) of ANP and C-ANP increased in the renal medulla in eNOS-/- mice. CONCLUSION These results suggest that the eNOS-NO system may be partly involved in regulation of ANP, NPR-A, -C, and TonEBP mRNA expression in the kidney.
Peptides | 2011
Shan Gao; Young-Bin Oh; Amin Shah; Woo Hyun Park; Suhn Hee Kim
Somatostatin is a cyclic-14 amino acid peptide which mainly distributed in digestive system and brain. Somatostatin receptor (SSTR) is a G-protein coupled receptor and all five SSTR subtypes are expressed in cardiomyocytes. The aim of this study was to investigate the effect of somatostatin on atrial natriuretic peptide (ANP) secretion and its signaling pathway. Somatostatin (0.01 and 0.1nM) decreased ANP secretion in isolated beating rat atrium in a dose-dependent manner. But atrial contractility and translocation of extracellular fluid were not changed. Somatostatin-induced decrease in ANP secretion was significantly attenuated by the pretreatment with CYN 154806 (SSTR type 2 antagonist; 0.1μM), but not by BIM 23056 (SSTR type 5 antagonist; 0.1μM) and urantide (urotensin II receptor antagonist; 0.1μM). When pretreated with an agonist for SSTR type 2 (Seglitide, 0.1nM) and SSTR type 5 (L 817818, 0.1nM), only Seglitide reduced ANP secretion similar to that of somatostatin. The suppressive effect of somatostatin on ANP secretion was attenuated by the pretreatment with an inhibitor for adenylyl cyclase (MDL-12330A, 5μM) or protein kinase A (KT 5720, 0.1μM). In diabetic rat atria, the suppressive effect of somatostatin on ANP secretion and concentration was attenuated. Real time-PCR and western blot shows the decreased level of SSTR type 2 mRNA and protein in diabetic rat atria. These data suggest that somatostatin decreased ANP secretion through SSTR type 2 and an attenuation of suppressive effect of somatostatin on ANP secretion in diabetic rat atria is due to a down-regulation of SSTR type 2.