Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young Chan Chae is active.

Publication


Featured researches published by Young Chan Chae.


Journal of Clinical Investigation | 2013

Metabolic stress regulates cytoskeletal dynamics and metastasis of cancer cells

M. Cecilia Caino; Young Chan Chae; Valentina Vaira; Stefano Ferrero; Mario Nosotti; Nina M. Martin; Ashani T. Weeraratna; Michael P. O’Connell; Danielle Jernigan; Alessandro Fatatis; Lucia R. Languino; Silvano Bosari; Dario C. Altieri

Metabolic reprogramming is an important driver of tumor progression; however, the metabolic regulators of tumor cell motility and metastasis are not understood. Here, we show that tumors maintain energy production under nutrient deprivation through the function of HSP90 chaperones compartmentalized in mitochondria. Using cancer cell lines, we found that mitochondrial HSP90 proteins, including tumor necrosis factor receptor-associated protein-1 (TRAP-1), dampen the activation of the nutrient-sensing AMPK and its substrate UNC-51-like kinase (ULK1), preserve cytoskeletal dynamics, and release the cell motility effector focal adhesion kinase (FAK) from inhibition by the autophagy initiator FIP200. In turn, this results in enhanced tumor cell invasion in low nutrients and metastatic dissemination to bone or liver in disease models in mice. Moreover, we found that phosphorylated ULK1 levels were correlated with shortened overall survival in patients with non-small cell lung cancer. These results demonstrate that mitochondrial HSP90 chaperones, including TRAP-1, overcome metabolic stress and promote tumor cell metastasis by limiting the activation of the nutrient sensor AMPK and preventing autophagy.


Nature Communications | 2013

Landscape of the mitochondrial Hsp90 metabolome in tumours

Young Chan Chae; Alessia Angelin; Sofia Lisanti; Andrew V. Kossenkov; Kaye D. Speicher; Huan Wang; James F. Powers; Arthur S. Tischler; Karel Pacak; Stephanie Fliedner; Ryan D. Michalek; Edward D. Karoly; Douglas C. Wallace; Lucia R. Languino; David W. Speicher; Dario C. Altieri

Reprogramming of tumor cell metabolism contributes to disease progression and resistance to therapy, but how this process is regulated on the molecular level is unclear. Here we report that Heat Shock Protein 90 (Hsp90)-directed protein folding in mitochondria controls central metabolic networks in tumor cells, including the electron transport chain, citric acid cycle, fatty acid oxidation, amino acid synthesis, and cellular redox status. Specifically, mitochondrial Hsp90, but not cytosolic Hsp90, binds and stabilizes the electron transport chain Complex II subunit succinate dehydrogenase-B, maintaining cellular respiration under low-nutrient conditions, and contributing to hypoxia-inducible factor-1α-mediated tumorigenesis in patients carrying succinate dehydrogenase-B mutations. Thus, Hsp90-directed proteostasis in mitochondria regulates tumor cell metabolism, and may provide a tractable target for cancer therapy.


Cancer Cell | 2012

Control of Tumor Bioenergetics and Survival Stress Signaling by Mitochondrial HSP90s

Young Chan Chae; M. Cecilia Caino; Sofia Lisanti; Jagadish C. Ghosh; Takehiko Dohi; Nika N. Danial; Jessie Villanueva; Stefano Ferrero; Valentina Vaira; Luigi Santambrogio; Silvano Bosari; Lucia R. Languino; Meenhard Herlyn; Dario C. Altieri

Tumors successfully adapt to constantly changing intra- and extracellular environments, but the wirings of this process are still largely elusive. Here, we show that heat-shock-protein-90-directed protein folding in mitochondria, but not cytosol, maintains energy production in tumor cells. Interference with this process activates a signaling network that involves phosphorylation of nutrient-sensing AMP-activated kinase, inhibition of rapamycin-sensitive mTOR complex 1, induction of autophagy, and expression of an endoplasmic reticulum unfolded protein response. This signaling network confers a survival and proliferative advantage to genetically disparate tumors, and correlates with worse outcome in lung cancer patients. Therefore, mitochondrial heat shock protein 90s are adaptive regulators of tumor bioenergetics and tractable targets for cancer therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2015

PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion

M. Cecilia Caino; Jagadish C. Ghosh; Young Chan Chae; Valentina Vaira; Dayana B. Rivadeneira; Alice Faversani; Paolo Rampini; Andrew V. Kossenkov; Katherine M. Aird; Rugang Zhang; Marie R. Webster; Ashani T. Weeraratna; Silvano Bosari; Lucia R. Languino; Dario C. Altieri

Significance Despite the promise of personalized cancer medicine, most molecular therapies produce only modest and short-lived patient gains. In addition to drug resistance, it is also possible that tumors adaptively reprogram their signaling pathways to evade therapy-induced “stress” and, in the process, acquire more aggressive disease traits. We show here that small-molecule inhibitors of PI3K, a cancer node and important therapeutic target, induce transcriptional and signaling reprogramming in tumors. This involves the trafficking of energetically active mitochondria to subcellular sites of cell motility, where they provide a potent, “regional” energy source to support tumor cell invasion. Although this response may paradoxically increase the risk of metastasis during PI3K therapy, targeting mitochondrial reprogramming is feasible, and could provide a novel therapeutic strategy. Molecular therapies are hallmarks of “personalized” medicine, but how tumors adapt to these agents is not well-understood. Here we show that small-molecule inhibitors of phosphatidylinositol 3-kinase (PI3K) currently in the clinic induce global transcriptional reprogramming in tumors, with activation of growth factor receptors, (re)phosphorylation of Akt and mammalian target of rapamycin (mTOR), and increased tumor cell motility and invasion. This response involves redistribution of energetically active mitochondria to the cortical cytoskeleton, where they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility. Blocking oxidative phosphorylation prevents adaptive mitochondrial trafficking, impairs membrane dynamics, and suppresses tumor cell invasion. Therefore, “spatiotemporal” mitochondrial respiration adaptively induced by PI3K therapy fuels tumor cell invasion, and may provide an important antimetastatic target.


Journal of Clinical Investigation | 2016

Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors

Gao Zhang; Dennie T. Frederick; Lawrence Wu; Zhi Wei; Clemens Krepler; Satish Srinivasan; Young Chan Chae; Xiaowei Xu; Harry Choi; Elaida Dimwamwa; Omotayo Ope; Batool Shannan; Devraj Basu; Dongmei Zhang; Manti Guha; Min Xiao; Sergio Randell; Katrin Sproesser; Wei Xu; Jephrey Y. Liu; Giorgos C. Karakousis; Lynn M. Schuchter; Tara C. Gangadhar; Ravi K. Amaravadi; Mengnan Gu; Caiyue Xu; Abheek Ghosh; Weiting Xu; Tian Tian; Jie Zhang

Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi.


Journal of the National Cancer Institute | 2015

Adaptive mitochondrial reprogramming and resistance to PI3K therapy

Jagadish C. Ghosh; Markus D. Siegelin; Valentina Vaira; Alice Faversani; Michele Tavecchio; Young Chan Chae; Sofia Lisanti; Paolo Rampini; Massimo Giroda; M. Cecilia Caino; Jae Ho Seo; Andrew V. Kossenkov; Ryan D. Michalek; David C. Schultz; Silvano Bosari; Lucia R. Languino; Dario C. Altieri

BACKGROUND Small molecule inhibitors of phosphatidylinositol-3 kinase (PI3K) have been developed as molecular therapy for cancer, but their efficacy in the clinic is modest, hampered by resistance mechanisms. METHODS We studied the effect of PI3K therapy in patient-derived tumor organotypic cultures (from five patient samples), three glioblastoma (GBM) tumor cell lines, and an intracranial model of glioblastoma in immunocompromised mice (n = 4-5 mice per group). Mechanisms of therapy-induced tumor reprogramming were investigated in a global metabolomics screening, analysis of mitochondrial bioenergetics and cell death, and modulation of protein phosphorylation. A high-throughput drug screening was used to identify novel preclinical combination therapies with PI3K inhibitors, and combination synergy experiments were performed. All statistical methods were two-sided. RESULTS PI3K therapy induces global metabolic reprogramming in tumors and promotes the recruitment of an active pool of the Ser/Thr kinase, Akt2 to mitochondria. In turn, mitochondrial Akt2 phosphorylates Ser31 in cyclophilin D (CypD), a regulator of organelle functions. Akt2-phosphorylated CypD supports mitochondrial bioenergetics and opposes tumor cell death, conferring resistance to PI3K therapy. The combination of a small-molecule antagonist of CypD protein folding currently in preclinical development, Gamitrinib, plus PI3K inhibitors (PI3Ki) reverses this adaptive response, produces synergistic anticancer activity by inducing mitochondrial apoptosis, and extends animal survival in a GBM model (vehicle: median survival = 28.5 days; Gamitrinib+PI3Ki: median survival = 40 days, P = .003), compared with single-agent treatment (PI3Ki: median survival = 32 days, P = .02; Gamitrinib: median survival = 35 days, P = .008 by two-sided unpaired t test). CONCLUSIONS Small-molecule PI3K antagonists promote drug resistance by repurposing mitochondrial functions in bioenergetics and cell survival. Novel combination therapies that target mitochondrial adaptation can dramatically improve on the efficacy of PI3K therapy in the clinic.


PLOS Biology | 2016

The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis

Jae Ho Seo; Dayana B. Rivadeneira; M. Cecilia Caino; Young Chan Chae; David W. Speicher; Hsin Yao Tang; Valentina Vaira; Silvano Bosari; Alessandro Palleschi; Paolo Rampini; Andrew V. Kossenkov; Lucia R. Languino; Dario C. Altieri

Mitochondria must buffer the risk of proteotoxic stress to preserve bioenergetics, but the role of these mechanisms in disease is poorly understood. Using a proteomics screen, we now show that the mitochondrial unfoldase-peptidase complex ClpXP associates with the oncoprotein survivin and the respiratory chain Complex II subunit succinate dehydrogenase B (SDHB) in mitochondria of tumor cells. Knockdown of ClpXP subunits ClpP or ClpX induces the accumulation of misfolded SDHB, impairing oxidative phosphorylation and ATP production while activating “stress” signals of 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and autophagy. Deregulated mitochondrial respiration induced by ClpXP targeting causes oxidative stress, which in turn reduces tumor cell proliferation, suppresses cell motility, and abolishes metastatic dissemination in vivo. ClpP is universally overexpressed in primary and metastatic human cancer, correlating with shortened patient survival. Therefore, tumors exploit ClpXP-directed proteostasis to maintain mitochondrial bioenergetics, buffer oxidative stress, and enable metastatic competence. This pathway may provide a “drugable” therapeutic target in cancer.


American Journal of Respiratory and Critical Care Medicine | 2018

Mitochondrial HSP90 Accumulation Promotes Vascular Remodeling in Pulmonary Arterial Hypertension

Olivier Boucherat; Thibaut Peterlini; Alice Bourgeois; Valérie Nadeau; Sandra Breuils-Bonnet; Stéphanie Boilet-Molez; François Potus; Jolyane Meloche; Sophie Chabot; Caroline Lambert; Eve Tremblay; Young Chan Chae; Dario C. Altieri; Gopinath Sutendra; Evangelos D. Michelakis; Roxane Paulin; Steeve Provencher; Sébastien Bonnet

&NA; Rationale: Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with a poor prognosis and limited therapeutic options. Although the mechanisms contributing to vascular remodeling in PAH are still unclear, several features, including hyperproliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs), have led to the emergence of the cancer‐like concept. The molecular chaperone HSP90 (heat shock protein 90) is directly associated with malignant growth and proliferation under stress conditions. In addition to being highly expressed in the cytosol, HSP90 exists in a subcellular pool compartmentalized in the mitochondria (mtHSP90) of tumor cells, but not in normal cells, where it promotes cell survival. Objectives: We hypothesized that mtHSP90 in PAH‐PASMCs represents a protective mechanism against stress, promoting their proliferation and resistance to apoptosis. Methods: Expression and localization of HSP90 were analyzed by Western blot, immunofluorescence, and immunogold electron microscopy. In vitro, effects of mtHSP90 inhibition on mitochondrial DNA integrity, bioenergetics, cell proliferation and resistance to apoptosis were assessed. In vivo, the therapeutic potential of Gamitrinib, a mitochondria‐targeted HSP90 inhibitor, was tested in fawn‐hooded and monocrotaline rats. Measurements and Main Results: We demonstrated that, in response to stress, HSP90 preferentially accumulates in PAH‐PASMC mitochondria (dual immunostaining, immunoblot, and immunogold electron microscopy) to ensure cell survival by preserving mitochondrial DNA integrity and bioenergetic functions. Whereas cytosolic HSP90 inhibition displays a lack of absolute specificity for PAH‐PASMCs, Gamitrinib decreased mitochondrial DNA content and repair capacity and bioenergetic functions, thus repressing PAH‐PASMC proliferation (Ki67 labeling) and resistance to apoptosis (Annexin V assay) without affecting control cells. In vivo, Gamitrinib improves PAH in two experimental rat models (monocrotaline and fawn‐hooded rat). Conclusions: Our data show for the first time that accumulation of mtHSP90 is a feature of PAH‐PASMCs and a key regulator of mitochondrial homeostasis contributing to vascular remodeling in PAH.


Oncotarget | 2017

A Mitochondrial-targeted purine-based HSP90 antagonist for leukemia therapy

Kelly G. Bryant; Young Chan Chae; Rogelio Martinez; John Gordon; Khaled M. Elokely; Andrew V. Kossenkov; Steven Grant; Wayne E. Childers; Magid Abou-Gharbia; Dario C. Altieri

Reprogramming of mitochondrial functions sustains tumor growth and may provide therapeutic opportunities. Here, we targeted the protein folding environment in mitochondria by coupling a purine-based inhibitor of the molecular chaperone Heat Shock Protein-90 (Hsp90), PU-H71 to the mitochondrial-targeting moiety, triphenylphosphonium (TPP). Binding of PU-H71-TPP to ADP-Hsp90, Hsp90 co-chaperone complex or mitochondrial Hsp90 homolog, TRAP1 involved hydrogen bonds, π-π stacking, cation-π contacts and hydrophobic interactions with the surrounding amino acids in the active site. PU-H71-TPP selectively accumulated in mitochondria of tumor cells (17-fold increase in mitochondria/cytosol ratio), whereas unmodified PU-H71 showed minimal mitochondrial localization. Treatment of tumor cells with PU-H71-TPP dissipated mitochondrial membrane potential, inhibited oxidative phosphorylation in sensitive cell types, and reduced ATP production, resulting in apoptosis and tumor cell killing. Unmodified PU-H71 had no effect. Bioinformatics analysis identified a “mitochondrial Hsp90” signature in Acute Myeloid Leukemia (AML), which correlates with worse disease outcome. Accordingly, inhibition of mitochondrial Hsp90s killed primary and cultured AML cells, with minimal effects on normal peripheral blood mononuclear cells. These data demonstrate that directing Hsp90 inhibitors with different chemical scaffolds to mitochondria is feasible and confers improved anticancer activity. A potential “addiction” to mitochondrial Hsp90s may provide a new therapeutic target in AML.


Nature Communications | 2015

Corrigendum: Landscape of the mitochondrial Hsp90 metabolome in tumours

Young Chan Chae; Alessia Angelin; Sofia Lisanti; Andrew V. Kossenkov; Kaye D. Speicher; Huan Wang; James F. Powers; Arthur S. Tischler; Karel Pacak; Stephanie Fliedner; Ryan D. Michalek; Edward D. Karoly; Douglas C. Wallace; Lucia R. Languino; David W. Speicher; Dario C. Altieri

Nature Communications 4: Article number: 2139 (2013); Published 10 July 2013; Updated 18 June 2015. This article was published without any declaration of competing financial interests. A revised competing financial interests statement is provided below. Young Chan Chae and Dario C. Altieri are co-inventors on the patent entitled ‘Methods of Controlling Tumor Bioenergetics Networks’ patent number: WO2013123151 A1.

Collaboration


Dive into the Young Chan Chae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucia R. Languino

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvano Bosari

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Valentina Vaira

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge