Young-Eui Kim
Sungkyunkwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Young-Eui Kim.
Annals of Hematology | 2004
Jungok Kim; Sun-Jick Kim; Sung Yoon Park; Young-Eui Kim; Jung Mo Kim; Myung-Hyun Lee; Hyun-Mee Ryu
Mesenchymal progenitor or stem cells (MPCs) isolated from fetal blood, liver, and bone marrow are a population of multipotential cells that can proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat, and stroma. The objective of this study was to isolate and characterize MPCs in the human umbilical cord. The suspensions of endothelial and subendothelial cells in cord vein were collected and cultured in M199 supplemented with 10% fetal bovine serum (FBS). Of 50 umbilical cord samples, 3 had numerous fibroblastoid cells morphologically distinguishable from endothelial cells. Fibroblastic cells displayed lack of expression of vWF, Flk-1, and PECAM-1, indicating the endothelial cell-specific marker. To investigate the differentiation potentials, the cells were cultured in adipogenic or osteogenic medium for 2 weeks. Fibroblast-like cells treated with adipogenic supplementation showed Oil red O-positive staining and expressed adipsin, FABP4, LPL, and PPARγ2 genes by reverse transcriptase polymerase chain reaction (RT-PCR). In osteogenic differentiation, alkaline phosphatase activity and calcium accumulation were detected. RT-PCR studies determined that Cx43, osteopontin, and Runx2 genes were expressed in the osteogenic cultures. Among three cell lines cultured continuously for passage 10, two had normal karyotypes; however, one retained a karyotype of mos 46,XY[19]/47,XY,+mar[3]. These observations suggest that MPCs are present in human umbilical cord and possess several typical traits of MPCs.
Journal of Virology | 2011
Young-Eui Kim; Jin-Hyoung Lee; Eui Tae Kim; Hye Jin Shin; Su Yeon Gu; Hyang Sook Seol; Paul D. Ling; Chan Hee Lee; Jin-Hyun Ahn
ABSTRACT The interferon-inducible Sp100 proteins are thought to play roles in the chromatin pathway and in transcriptional regulation. Sp100A, the smallest isoform, is one of the major components of PML nuclear bodies (NBs) that exhibit intrinsic antiviral activity against several viruses. Since PML NBs are disrupted by the immediate-early 1 (IE1) protein during human cytomegalovirus (HCMV) infection, the modulation of Sp100 protein expression or activity during infection has been suggested. Here, we show that Sp100 proteins are lost largely in the late stages of HCMV infection. This event required viral gene expression and involved posttranscriptional control. The mutant virus with deletion of the sequence for IE1 (CR208) did not have Sp100 loss. In CR208 infection, PML depletion by RNA interference abrogated the accumulation of SUMO-modified Sp100A and of certain high-molecular-weight Sp100 isoforms but did not significantly affect unmodified Sp100A, suggesting that the IE1-induced disruption of PML NBs is not sufficient for the complete loss of Sp100 proteins. Sp100A loss was found to require proteasome activity. Depletion of all Sp100 proteins by RNA silencing enhanced HCMV replication and major IE (MIE) gene expression. Sp100 knockdown enhanced the acetylation level of histones associated with the MIE promoter, demonstrating that the repressive effect of Sp100 proteins may involve, at least in part, the epigenetic control of the MIE promoter. Sp100A was found to interact directly with IE1 through the N-terminal dimerization domain. These findings indicate that the IE1-dependent loss of Sp100 proteins during HCMV infection may represent an important requirement for efficient viral growth.
Journal of Virology | 2006
Mi-Young Park; Young-Eui Kim; Myong-Rang Seo; Jae-Rin Lee; Chan Hee Lee; Jin-Hyun Ahn
ABSTRACT Four phosphoproteins, of 34, 43, 50, and 84 kDa, with common amino termini are synthesized via alternative splicing from the UL112-113 region of the human cytomegalovirus genome. Although genetic studies provided evidence that both the UL112 and UL113 loci in the viral genome are required for efficient viral replication, whether the four proteins play specific roles or cooperate in replication is not understood. Here we present evidence, using in vitro and in vivo coimmunoprecipitation assays, that the four UL112-113 proteins both self-interact and interact with each other. A mapping study of the 84-kDa protein showed that the N-terminal region encompassing amino acids 1 to 125, which is shared in all UL112-113 proteins and highly conserved among betaherpesviruses, is required for both self-interaction and nuclear localization as foci. Further localization studies revealed that, unlike the 43-, 50-, and 84-kDa proteins, which were distributed as nuclear punctate forms, the 34-kDa form was located predominantly in the cytoplasm. However, when all four proteins were coexpressed simultaneously, all of the UL112-113 proteins were efficiently localized to the promyelocytic leukemia oncogenic domains. We also found that the ability of the UL112-113 proteins to relocate UL44 (the viral polymerase processivity factor) to prereplication foci relied on self-interaction and reached maximal levels when the four proteins were coexpressed. Therefore, our data suggest that interactions occurring among UL112-113 proteins via their shared N-terminal regions are important to both their intranuclear targeting and the recruitment of UL44 to subnuclear sites for viral replication.
PLOS Pathogens | 2015
Young-Eui Kim; Jin-Hyun Ahn
Promyelocytic leukemia protein (PML), a major component of PML nuclear bodies (also known as nuclear domain 10), is involved in diverse cellular processes such as cell proliferation, apoptosis, gene regulation, and DNA damage response. PML also acts as a restriction factor that suppresses incoming viral genomes, therefore playing an important role in intrinsic defense. Here, we show that PML positively regulates type I interferon response by promoting transcription of interferon-stimulated genes (ISGs) and that this regulation by PML is counteracted by human cytomegalovirus (HCMV) IE1 protein. Small hairpin RNA-mediated PML knockdown in human fibroblasts reduced ISG induction by treatment of interferon-β or infection with UV-inactivated HCMV. PML was required for accumulation of activated STAT1 and STAT2, interacted with them and HDAC1 and HDAC2, and was associated with ISG promoters after HCMV infection. During HCMV infection, viral IE1 protein interacted with PML, STAT1, STAT2, and HDACs. Analysis of IE1 mutant viruses revealed that, in addition to the STAT2-binding domain, the PML-binding domain of IE1 was necessary for suppression of interferon-β-mediated ISG transcription, and that IE1 inhibited ISG transcription by sequestering interferon-stimulated gene factor 3 (ISGF3) in a manner requiring its binding of PML and STAT2, but not of HDACs. In conclusion, our results demonstrate that PML participates in type I interferon-induced ISG expression by regulating ISGF3, and that this regulation by PML is counteracted by HCMV IE1, highlighting a widely shared viral strategy targeting PML to evade intrinsic and innate defense mechanisms.
Journal of Virology | 2013
Thanh H. Pham; Ki Mun Kwon; Young-Eui Kim; Kyeong Kyu Kim; Jin-Hyun Ahn
ABSTRACT DNA-dependent activator of interferon regulatory factor (DAI) acts as a cytosolic B-form DNA sensor that induces type I interferons. However, DAI is not required for DNA sensing in certain cell types due to redundancy of the DNA sensing system. Here, we investigated the effect of DAI on herpes simplex virus 1 (HSV-1) infection in HepG2 hepatocellular carcinoma cells. DAI transcription was induced after gamma interferon (IFN-γ) treatment or HSV-1 infection. HSV-1 replication was enhanced by DAI knockdown, and ectopic DAI expression repressed viral replication in a manner requiring the Zβ and D3 domains, but not the Zα domain. This activity of DAI was more prominent at low multiplicity of infection (MOI) and correlated with the reduced expression of viral immediate-early genes. Consistently, DAI repressed the activation of ICP0 promoter in reporter gene assays. DAI knockdown did not affect the B-DNA-mediated IFN-β transcription and IRF3 activation, and overexpression of DAI and RIP1 did not enhance NF-κB activation by B-DNA treatment, demonstrating that DAI is not essential for the B-DNA-mediated IFN production in HepG2 cells. DAI colocalized with ICP0 in a subset of nuclear and cytoplasmic foci in infected cells and interacted with ICP0 in coimmunoprecipitation assays. The anti-HSV-1 effect of DAI was not observed in ICP0-deleted mutant virus infection at a high MOI in HepG2 cells and mouse embryonic fibroblasts. Degradation of IFI16 and PML by ICP0 was enhanced in infection of DAI-knockdown cells. Collectively, these results demonstrate that DAI can suppress HSV-1 growth independent of DNA sensing through mechanisms involving suppression of viral genomes and regulation of ICP0.
Journal of Virology | 2010
Young-Eui Kim; Jin-Hyun Ahn
ABSTRACT The human cytomegalovirus (HCMV) UL112-113 region encodes four phosphoproteins with common amino termini (p34, p43, p50, and p84) via alternative splicing and is thought to be required for efficient viral DNA replication. We have previously shown that interactions among the four UL112-113 proteins regulate their intranuclear targeting and enable the recruitment of the UL44 DNA polymerase processivity factor to viral prereplication foci. Here, we show that in virus-infected cells, the UL112-113 proteins form a complex with UL44 and other replication proteins, such as UL84 and IE2. In vitro assays showed that all four phosphoproteins interacted with UL44. Interestingly, p84 required both the shared amino-terminal region and the specific near-carboxy-terminal region for UL44 binding. UL44 required both the carboxy-terminal region and the central region, including the dimerization domain for p84 binding. The production of recombinant virus from mutant Towne bacterial artificial chromosome (BAC) DNA, which encodes intact p34, p43, and p50 and a carboxy-terminally truncated p84 defective in UL44 binding, was severely impaired compared to wild-type BAC DNA. A similar defect was observed when mutant BAC DNA encoded a carboxy-terminally truncated UL44 defective in p84 binding. In cotransfection replication assays using six replication core proteins, UL84, IE2, and UL112-113, the efficient replication of an HCMV oriLyt-containing plasmid required the regions of p84 and UL44 necessary for their interaction. Our data suggest that the UL112-113 proteins form a complex with other replication proteins such as UL44, UL84, and IE2 and that the specific interaction of UL112-113 p84 with UL44 is necessary for efficient viral DNA replication.
Journal of General Virology | 2013
Junsub Lee; Kyungmi Koh; Young-Eui Kim; Jin-Hyun Ahn; Sunyoung Kim
NF-E2 related factor 2 (Nrf2) is a transcription factor that plays a key role(s) in cellular defence against oxidative stress. In this study, we showed that the expression of Nrf2 was upregulated in primary human foreskin fibroblasts (HFFs), following human cytomegalovirus (HCMV/HHV-5) infection. The expression of haem oxygenase-1, a downstream target of Nrf2, was also increased by HCMV infection, and this induction was suppressed in HFFs expressing a small hairpin RNA (shRNA) against Nrf2. The HCMV-mediated increase in Nrf2 expression was abolished when UV-irradiated virus was used or when the activity of casein kinase 2 was inhibited. Host cells infected by HCMV had higher survival rates following oxidative stress induced by buthionine sulfoximine compared with uninfected control cells, but this cell-protective effect was abolished by the use of Nrf2 shRNA. Our results suggest that HCMV-mediated activation of Nrf2 might be beneficial to the virus by increasing the host cells ability to cope with oxidative stress resulting from viral infection and/or inflammation.
Haemophilia | 2005
Junkyeong Kim; Sung Yoon Park; Young-Eui Kim; Jung Mo Kim; Duk-Kyung Kim; Hyun-Mee Ryu
Summary. Haemophilia A is an X‐linked inherited bleeding disorder. Linkage diagnosis using polymorphic markers in the factor VIII gene is used to archive the carrier detection and prenatal diagnosis. The objective of this study was to establish the allele frequency and heterozygosity rate (HR) of two new intragenic markers (Intron 1 and 24) and other markers (Intron 13 and 22) using fluorescent PCR. Five hundred unrelated healthy women were screened and haemophilic family was studied for carrier detection and prenatal diagnosis. We observed five different alleles of Intron 1, 10 of Intron 24, nine of Intron 13 and six of Intron 22. The observed HR for Intron 1, 24, 13 and 22 were 34.0, 35.2, 53.0 and 42.6%, while the expected HR were 33.6, 36.3, 50.1 and 44.3%, respectively. Heterozygosity rate with the combined use of all four intragenic markers was 76.6% (383/500). In prenatal diagnosis of a haemophilic family, a pregnant woman was heterozygous with three intragenic (Intron 1, 13 and 22) and one extragenic St14 VNTR (DXS52) markers. She was considered to be a carrier, and she carried a male foetus by AMXY PCR and chromosome analysis of amniocytes. Foetus did not have mutant haplotype as his uncle, suggesting a normal male status. Our study demonstrates the utility of two new intragenic markers in FVIII gene for carrier detection and prenatal diagnosis of haemophilic families.
Journal of Virology | 2010
Eui Tae Kim; Young-Eui Kim; Yong Ho Huh; Jin-Hyun Ahn
ABSTRACT The 86-kDa immediate-early 2 (IE2) protein of human cytomegalovirus (HCMV) is a promiscuous transactivator essential for viral gene expression. IE2 is covalently modified by SUMO at two lysine residues (K175 and K180) and also interacts noncovalently with SUMO. Although SUMOylation of IE2 has been shown to enhance its transactivation activity, the role of SUMO binding is not clear. Here we showed that SUMO binding by IE2 is necessary for its efficient transactivation function and for viral growth. IE2 bound physically to SUMO-1 through a SUMO-interacting motif (SIM). Mutations in SIM (mSIM) or in both SUMOylation sites and SIM (KR/mSIM), significantly reduced IE2 transactivation effects on viral early promoters. The replication of IE2 SIM mutant viruses (mSIM or KR/mSIM) was severely depressed in normal human fibroblasts. Analysis of viral growth curves revealed that the replication defect of the mSIM virus correlated with low-level accumulation of SUMO-modified IE2 and of viral early and late proteins. Importantly, both the formation of viral transcription domains and the association of IE2 with viral promoters in infected cells were significantly reduced in IE2 SIM mutant virus infection. Furthermore, IE2 was found to interact with the SUMO-modified form of TATA-binding protein (TBP)-associated factor 12 (TAF12), a component of the TFIID complex, in a SIM-dependent manner, and this interaction enhanced the transactivation activity of IE2. Our data demonstrate that the interaction of IE2 with SUMO-modified proteins plays an important role for the progression of the HCMV lytic cycle, and they suggest a novel viral mechanism utilizing the cellular SUMO system.
Journal of General Virology | 2012
Hye Jin Shin; Young-Eui Kim; Eui Tae Kim; Jin-Hyun Ahn
Human cytomegalovirus (HCMV) immediate-early (IE) 1 protein associates with chromosomes in mitotic cells using its carboxyl-terminal 16 aa region. However, the role of this IE1 activity in viral growth has not been evaluated in the context of mutant virus infection. We produced a recombinant HCMV encoding mutant IE1 with the carboxyl-terminal chromosome-tethering domain (CTD) deleted. This IE1(ΔCTD) virus grew like the wild-type virus in fibroblasts, indicating that the CTD is not essential for viral replication in permissive cells. Unlike wild-type virus infections, PML and STAT2, which interact with IE1, did not accumulate at mitotic chromosomes in IE1(ΔCTD) virus-infected fibroblasts, demonstrating that their associations with chromosomes are IE1 CTD-dependent. IE1 SUMOylation did not affect IE1 association with chromosomes. Our results provide genetic evidence that the CTD is required for the associations of IE1, PML and STAT2 with mitotic chromosomes, but that these IE1-related activities are not essential for viral replication in fibroblasts.