Young Hee Jin
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Young Hee Jin.
Journal of Autoimmunity | 2011
Maureen H. Richards; Meghann Teague Getts; Joseph R. Podojil; Young Hee Jin; Byung S. Kim; Stephen D. Miller
Theilers murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) serves as virus-induced model of chronic progressive multiple sclerosis. Infection of susceptible SJL/J mice leads to life-long CNS virus persistence and a progressive autoimmune demyelinating disease mediated by myelin-specific T cells activated via epitope spreading. In contrast, virus is rapidly cleared by a robust CTL response in TMEV-IDD-resistant C57BL/6 mice. We investigated whether differential induction of regulatory T cells (Tregs) controls susceptibility to TMEV-IDD. Infection of disease-susceptible SJL/J, but not B6 mice, leads to rapid activation and expansion of Tregs resulting in an unfavorable CNS ratio of Treg:Teffector cells. In addition, anti-CD25-induced inactivation of Tregs in susceptible SJL/J, but not resistant B6, mice results in significantly decreased clinical disease concomitant with enhanced anti-viral CD4(+), CD8(+) and antibody responses resulting in decreased CNS viral titers. This is the first demonstration that virus-induced Treg activation regulates susceptibility to autoimmune disease differentially in susceptible and resistant strains of mice and provides a new mechanistic explanation for the etiology of infection-induced autoimmunity.
Journal of Virology | 2007
Young Hee Jin; Mani Mohindru; Min H. Kang; Alyson C. Fuller; Bongsu Kang; Daniel Gallo; Byung S. Kim
ABSTRACT Infection with Theilers murine encephalomyelitis virus (TMEV) in the central nervous system (CNS) causes an immune system-mediated demyelinating disease similar to human multiple sclerosis in susceptible but not resistant strains of mice. To understand the underlying mechanisms of differential susceptibility, we analyzed viral replication, cytokine production, and costimulatory molecule expression levels in microglia and macrophages in the CNS of virus-infected resistant C57BL/6 (B6) and susceptible SJL/J (SJL) mice. Our results indicated that message levels of TMEV, tumor necrosis factor alpha, beta interferon, and interleukin-6 were consistently higher in microglia from virus-infected SJL mice than in those from B6 mice. However, the levels of costimulatory molecule expression, as well as the ability to stimulate allogeneic T cells, were significantly lower in TMEV-infected SJL mice than in B6 mice. In addition, microglia from uninfected naïve mice displayed differential viral replication, T-cell stimulation, and cytokine production, similar to those of microglia from infected mice. These results strongly suggest that different levels of intrinsic susceptibility to TMEV infection, cytokine production, and T-cell activation ability by microglia contribute to the levels of viral persistence and antiviral T-cell responses in the CNS, which are critical for the differential susceptibility to TMEV-induced demyelinating disease between SJL and B6 mice.
Journal of Virology | 2012
Young Hee Jin; Seung Jae Kim; Eui Young So; Liping Meng; Marco Colonna; Byung S. Kim
ABSTRACT Infection of dendritic and glial cells with Theilers murine encephalomyelitis virus (TMEV) induces various cytokines via Toll-like receptor- and melanoma differentiation-associated gene 5 (MDA5)-dependent pathways. However, the involvement and role of MDA5 in cytokine gene activation and the pathogenesis of TMEV-induced demyelinating disease are largely unknown. In this study, we demonstrate that MDA5 plays a critical role in the production of TMEV-induced alpha interferon (IFN-α) during early viral infection and in protection against the development of virus-induced demyelinating disease. Our results indicate that MDA5-deficient 129SvJ mice display significantly higher viral loads and apparent demyelinating lesions in the central nerve system (CNS) accompanied by clinical symptoms compared with wild-type 129SvJ mice. During acute viral infection, MDA5-deficient mice produced elevated levels of chemokines, consistent with increased cellular infiltration, but reduced levels of IFN-α, known to control T cell responses and cellular infiltration. Additional studies with isolated CNS glial cells from these mice suggest that cells from MDA5-deficient mice are severely compromised in the production of IFN-α upon viral infection, which results in increased cellular infiltration and viral loads in the CNS. Despite inadequate stimulation, the overall T cell responses to the viral determinants were significantly elevated in MDA5-deficient mice, reflecting the increased cellular infiltration. Therefore, the lack of MDA5-mediated IFN-α production may facilitate a massive viral load and elevated cellular infiltration in the CNS during early viral infection, leading to the pathogenesis of demyelinating disease.
Journal of Virology | 2014
Wanqiu Hou; Young Hee Jin; Hyun Seok Kang; Byung S. Kim
ABSTRACT Interleukin-6 (IL-6) plays an important role in the development and progression of inflammatory responses, autoimmune diseases, and cancers. Many viral infections, including Theilers murine encephalomyelitis virus (TMEV), result in the vigorous production of IL-6. However, the role of IL-6 in the development of virus-induced inflammatory responses is unclear. The infection of susceptible mice with TMEV induces the development of chronic demyelinating disease, which is considered a relevant infectious model for multiple sclerosis. In this study, we demonstrate that resistant C57BL/6 mice carrying an IL-6 transgene (IL-6 Tg) develop a TMEV-induced demyelinating disease accompanied by an increase in viral persistence and an elevated Th17 cell response in the central nervous system. Either IL-6 or IL-17 induced the expression of Bcl-2 and Bcl-xL at a high concentration. The upregulated expression of prosurvival molecules in turn inhibited target cell destruction by virus-specific CD8+ T cells. More interestingly, IL-6 and IL-17 synergistically promoted the expression of these prosurvival molecules, preventing cellular apoptosis at a much lower (<5-fold) concentration. The signals involved in the synergy appear to include the activation of both STAT3 and NF-κB via distinct cytokine-dependent pathways. Thus, the excessive IL-6 promotes the generation of Th17 cells, and the resulting IL-6 and IL-17 synergistically promote viral persistence by protecting virus-infected cells from apoptosis and CD8+ T cell-mediated target destruction. These results suggest that blocking both IL-6 and IL-17 functions are important considerations for therapies of chronic viral diseases, autoimmune diseases, and cancers. IMPORTANCE This study indicates that an excessive level of IL-6 cytokine produced following viral infection promotes the development of IL-17-producing pathogenic helper T cells. We demonstrate here for the first time that IL-6 together with IL-17 synergistically enhances the expression of survival molecules to hinder critical host defense mechanisms removing virus-infected cells. This finding has an important implication in controlling not only chronic viral infections but also autoimmune diseases and cancers, which are associated with prolonged cell survival.
International Immunology | 2010
Naoya Takeichi; Satoshi Yanagisawa; Tomoki Kaneyama; Hideo Yagita; Young Hee Jin; Byung S. Kim; Chang-Sung Koh
We examined the role of Notch ligand Delta-like 4 (Dll4) in the development of Theilers murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD). Treatment with mAb to Dll4, especially during the effector phase, resulted in significant suppression of the disease development both clinically and histologically. The number of infiltrating mononuclear inflammatory cells in the spinal cords was also decreased in mice treated with anti-Dll4 mAb. Semi-quantitative analysis of mRNA by using real-time PCR revealed that mRNAs of T(h)1-derived cytokines such as IFN-gamma and T(h)17-derived cytokines such as IL-17 were decreased in mice treated with anti-Dll4 mAb, whereas those of T(h)2-derived cytokines such as IL-4 and IL-10 were not. Flow cytometric analysis of cytokines indicated that there were no significant differences between mAb-treated mice and control mice in the relative frequency of splenic T(h)1 and T(h)2. However, absolute cell numbers of T(h)1-derived cytokine-producing cells in spinal cord were markedly decreased in mice treated with anti-Dll4 mAb in effector phase compared with control mice treated with non-specific IgG. These data suggest that Dll4 is critically involved in the pathogenesis of TMEV-IDD and that antibodies to Dll4 could be used as a novel therapeutic treatment of demyelinating diseases such as human multiple sclerosis.
Journal of Virology | 2009
Young Hee Jin; Bongsu Kang; Byung S. Kim
ABSTRACT Theilers murine encephalomyelitis virus (TMEV)-induced immune-mediated demyelinating disease in susceptible mouse strains has been extensively investigated as a relevant model for human multiple sclerosis. Previous investigations of antiviral T-cell responses focus on immune responses to viral capsid proteins, while virtually nothing is reported on immune responses to nonstructural proteins. In this study, we have identified noncapsid regions recognized by CD4+ T cells from TMEV-infected mice using an overlapping peptide library. Interestingly, a greater number of CD4+ T cells recognizing an epitope (3D21-36) of the 3D viral RNA polymerase, in contrast to capsid epitopes, were detected in the CNS of TMEV-infected SJL mice, whereas only a minor population of CD4+ T cells from infected C57BL/6 mice recognized this region. The effects of preimmunization and tolerization with these epitopes on the development of demyelinating disease indicated that capsid-specific CD4+ T cells are protective during the early stages of viral infection, whereas 3D21-36-specific CD4+ T cells exacerbate disease development. Therefore, protective versus pathogenic CD4+ T-cell responses directed to TMEV appear to be epitope dependent, and the differences in CD4+ T-cell responses to these epitopes between susceptible and resistant mice may play an important role in the resistance or susceptibility to virally induced demyelinating disease.
Journal of Virology | 2013
Young Hee Jin; Wanqiu Hou; Hyun Seok Kang; Chang-Sung Koh; Byung S. Kim
ABSTRACT Infection with Theilers murine encephalomyelitis virus (TMEV) in the central nervous system (CNS) of susceptible mice results in an immune-mediated demyelinating disease which is considered a relevant viral model of human multiple sclerosis. We previously demonstrated that the expression of positive costimulatory molecules (CD40, CD80, and CD86) is higher on the microglia of TMEV-resistant C57BL/6 (B6) mice than the microglia of TMEV-susceptible SJL/J (SJL) mice. In this study, we analyzed the expression levels of the negative costimulatory molecules PD-1 and PDL-1 in the CNS of TMEV-infected SJL mice and B6 mice. Our results indicated that TMEV infection induces the expression of both PD-1 and PDL-1 on microglia and macrophages in the CNS but not in the periphery. The expression of PD-1 only on CNS-infiltrating macrophages and not on resident microglia was considerably higher (>4-fold) in TMEV-infected SJL mice than TMEV-infected B6 mice. We further demonstrated that interleukn-6 (IL-6) is necessary to induce the maximal expression of PDL-1 but not PD-1 after TMEV infection using IL-6-deficient mice and IL-6-transgenic mice in conjunction with recombinant IL-6. In addition, cells from type I interferon (IFN) receptor knockout mice failed to upregulate PD-1 and PDL-1 expression after TMEV infection in vitro, indicating that type I IFN signaling is associated with the upregulation. However, other IFN signaling may also participate in the upregulation. Taken together, these results strongly suggest that the expression of PD-1 and PDL-1 in the CNS is primarily upregulated following TMEV infection via type I IFN signaling and the maximal expression of PDL-1 additionally requires IL-6 signaling.
Journal of Virology | 2011
Young Hee Jin; Hyun Seok Kang; Mani Mohindru; Byung S. Kim
ABSTRACT Infection of the central nervous system (CNS) with Theilers murine encephalomyelitis virus (TMEV) induces an immune-mediated demyelinating disease in susceptible mouse strains such as SJL/J (H-2s) but not in strains such as C57BL/6 (H-2b). In addition, it has been shown that (C57BL/6 × SJL/J)F1 mice (F1 mice), which carry both resistant and susceptible MHC haplotypes (H-2b/s), are resistant to both viral persistence and TMEV-induced demyelinating disease. In this study, we further analyzed the immune responses underlying the resistance of F1 mice. Our study shows that the resistance of F1 mice is associated with a higher level of the initial virus-specific H-2b-restricted CD8+ T cell responses than of the H-2s-restricted CD8+ T cell responses. In contrast, pathogenic Th17 responses to viral epitopes are lower in F1 mice than in susceptible SJL/J mice. Dominant effects of resistant genes expressed in antigen-presenting cells of F1 mice on regulation of viral replication and induction of protective T cell responses appear to play a crucial role in disease resistance. Although the F1 mice are resistant to disease, the level of viral RNA in the CNS was intermediate between those of SJL/J and C57BL/6 mice, indicating the presence of a threshold of viral expression for pathogenesis.
Journal of Neuroimmunology | 2010
Young Hee Jin; Wanqiu Hou; Seung Jae Kim; Alyson C. Fuller; Bongsu Kang; Gwen E. Goings; Stephen D. Miller; Byung S. Kim
Theilers murine encephalomyelitis virus (TMEV) establishes a persistent infection in the central nervous system (CNS). To examine the role of type I interferon (IFN-I)-mediated signals in TMEV infection, mice lacking a subunit of the type I IFN receptor (IFN-IR KO mice) were utilized. In contrast to wild type mice, IFN-IR KO mice developed rapid fatal encephalitis accompanied with greater viral load and infiltration of immune cells to the CNS. The proportion of virus-specific CD4(+) and CD8(+) T cell responses in the CNS was significantly lower in IFN-IR KO mice during the early stage of infection. Levels of IFN-γ and IL-17 produced by isolated primed CD4(+) T cells in response to DCs from TMEV-infected IFN-IR KO mice were also lower than those stimulated by DCs from TMEV-infected wild type control mice. The less efficient stimulation of virus-specific T cells by virus-infected antigen-presenting cells is attributable in part to the low level expression of activation markers on TMEV-infected cells from IFN-IR KO mice. However, due to high levels of cellular infiltration and viral loads in the CNS, the overall numbers of virus-specific T cells are higher in IFN-IR KO mice during the later stage of viral infection. These results suggest that IFN-I-mediated signals play important roles in controlling cellular infiltration to the CNS and shaping local T cell immune responses.
Journal of Virology | 2015
Young Hee Jin; Hyun Seok Kang; Wanqiu Hou; Liping Meng; Byung S. Kim
ABSTRACT Intracerebral infection with Theilers murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease in susceptible SJL/J mice but not in resistant C57BL/6 mice. Previous studies have indicated that the major histocompatibility complex (MHC) genes play the most prominent role in the development of TMEV-induced demyelinating disease. In this study, we used C57BL/6.S (B6.S) congenic mice, which carry H-2 s MHC genes instead of H-2 b MHC genes in conjunction with the C57BL/6 (B6) background genes. Our data show that virus-infected B6.S mice are free from disease and have significantly lower viral loads than susceptible SJL mice, particularly in the spinal cord. A strong protective Th1-type T helper response with virtually no pathogenic Th17 response was detected in B6.S mice, in contrast to the reduced Th1- and robust Th17-type responses in SJL mice. Notably, lower levels of viral infectivity in B6.S antigen-presenting cells (APCs) correlated with the disease resistance and T-cell-type response. In vitro studies using APCs from B6.S and SJL mice show that TLR2, -3, -4, and -7, but not TLR9, signaling can replace viral infection and augment the effect of viral infection in the differentiation of the pathogenic Th17 cell type. Taken together, these results strongly suggest that the viral replication levels in APCs critically affect the induction of protective versus pathogenic Th cell types via the signaling of pattern recognition receptors for innate immune responses. Our current findings further imply that the levels of viral infectivity/replication and TLR-mediated signaling play critical roles in the pathogenesis of chronic viral diseases. IMPORTANCE This study indicates that innate immune cytokines produced in antigen-presenting cells stimulating the T cell immune responses during early viral infection play a critical role in determining the susceptibility of mice to the development of demyelinating disease. The level of innate immune cytokines reflects the level of initial viral infection in the antigen-presenting cells, and the level determines the development of T cell types, which are either protective or pathogenic. The level of initial viral infection to the cells is controlled by a gene or genes that are not associated with the major histocompatibility antigen complex genes. This finding has an important implication in controlling not only chronic viral infections but also infection-induced autoimmune-like diseases, which are closely associated with the pathogenic type of T cell responses.