Young Ho Byun
Yonsei University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Young Ho Byun.
PLOS ONE | 2011
Byoung Shik Shim; Young Ki Choi; Cheol-Heui Yun; Eu Gene Lee; Yoon Seong Jeon; Sung Moo Park; In Su Cheon; Dong Hyun Joo; Chung Hwan Cho; Min Suk Song; Sang Uk Seo; Young Ho Byun; Hae Jung Park; Haryoung Poo; Baik Lin Seong; Jae Ouk Kim; Huan Huu Nguyen; Konrad Stadler; Dong Wook Kim; Kee Jong Hong; Cecil Czerkinsky; Man Ki Song
Background The ectodomain of matrix protein 2 (M2e) of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs) have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n.) route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l.) route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored. Methods and Results A recombinant M2 protein with three tandem copies of the M2e (3M2eC) was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs. Conclusions The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections.
Vaccine | 2012
Young Ho Byun; Chung Truong Nguyen; Soo Young Kim; Baik Lin Seong; Songyong Park; Gyu Jin Woo; Yeup Yoon; Jeong Tae Koh; Kohtaro Fujihashi; Joon Haeng Rhee; Shee Eun Lee
The influenza virus, a mucosal pathogen that infects the respiratory tract, is a major global health issue. There have been attempts to mucosally administer inactivated influenza vaccines to induce both mucosal and systemic immune responses. However, mucosally administered inactivated influenza vaccine has low immunogenicity, which is partially due to the lack of an effective mucosal adjuvant. The development of a safe and effective mucosal adjuvant is a prerequisite to the practical use of a mucosal inactivated influenza vaccine. We have previously demonstrated that a bacterial flagellin, Vibrio vulnificus FlaB, when mixed with antigen and administered intranasally, exerts a strong mucosal adjuvant activity by stimulating the Toll-like receptor 5 (TLR5). In this study, we tested whether the FlaB protein could serve as an effective mucosal adjuvant for an inactivated trivalent influenza vaccine (TIV) manufactured for humans; in a murine vaccination model, this vaccine consists of A/Brisbane/59/07 (H1N1 subtype), A/Uruguay/716/07 (H3N2 subtype), and B/Florida/4/06 (B type). Intranasal co-administration of the TIV with FlaB induced prominent humoral responses as demonstrated by high influenza-specific IgA levels in both the mucosal secretions and serum and significant specific IgG induction in the systemic compartment. The FlaB protein significantly potentiated influenza-specific cytokine production by draining lymph node cells and splenocytes. The FlaB mucosal adjuvant conferred excellent protection against a lethal challenge with a live virulent virus with high hemagglutination inhibition (HAI) antibody (Ab) titers. The FlaB did not accumulate in the olfactory nerve and epithelium, guaranteeing against a retrograde uptake into the central nervous system. These results suggest that FlaB can be used as a promising mucosal adjuvant for nasal inactivated influenza vaccine development.
PLOS ONE | 2010
Huan H. Nguyen; Terrence M. Tumpey; Hae Jung Park; Young Ho Byun; Linh D. Tran; Van Dung Nguyen; Paul E. Kilgore; Cecil Czerkinsky; Jacqueline M. Katz; Baik Lin Seong; Jae Min Song; Young Bong Kim; Hoa T. Do; Tung Nguyen; Cam V. Nguyen
Background Pandemic influenza poses a serious threat to global health and the world economy. While vaccines are currently under development, passive immunization could offer an alternative strategy to prevent and treat influenza virus infection. Attempts to develop monoclonal antibodies (mAbs) have been made. However, passive immunization based on mAbs may require a cocktail of mAbs with broader specificity in order to provide full protection since mAbs are generally specific for single epitopes. Chicken immunoglobulins (IgY) found in egg yolk have been used mainly for treatment of infectious diseases of the gastrointestinal tract. Because the recent epidemic of highly pathogenic avian influenza virus (HPAIV) strain H5N1 has resulted in serious economic losses to the poultry industry, many countries including Vietnam have introduced mass vaccination of poultry with H5N1 virus vaccines. We reasoned that IgY from consumable eggs available in supermarkets in Vietnam could provide protection against infections with HPAIV H5N1. Methods and Findings We found that H5N1-specific IgY that are prepared from eggs available in supermarkets in Vietnam by a rapid and simple water dilution method cross-protect against infections with HPAIV H5N1 and related H5N2 strains in mice. When administered intranasally before or after lethal infection, the IgY prevent the infection or significantly reduce viral replication resulting in complete recovery from the disease, respectively. We further generated H1N1 virus-specific IgY by immunization of hens with inactivated H1N1 A/PR/8/34 as a model virus for the current pandemic H1N1/09 and found that such H1N1-specific IgY protect mice from lethal influenza virus infection. Conclusions The findings suggest that readily available H5N1-specific IgY offer an enormous source of valuable biological material to combat a potential H5N1 pandemic. In addition, our study provides a proof-of-concept for the approach using virus-specific IgY as affordable, safe, and effective alternative for the control of influenza outbreaks, including the current H1N1 pandemic.
Journal of Virology | 2012
Yo Han Jang; Young Ho Byun; Yoon Jae Lee; Yun Ha Lee; Kwang Hee Lee; Baik Lin Seong
ABSTRACT The rapid transmission of the pandemic 2009 H1N1 influenza virus (pH1N1) among humans has raised the concern of a potential emergence of reassortment between pH1N1 and highly pathogenic influenza strains, especially the avian H5N1 influenza virus. Here, we report that the cold-adapted pH1N1 live attenuated vaccine (CApH1N1) elicits cross-reactive immunity to seasonal and H5 influenza A viruses in the mouse model. Immunization with CApH1N1 induced both systemic and mucosal antibodies with broad reactivity to seasonal and H5 strains, including HAPI H5N1 and the avian H5N2 virus, providing complete protection against heterologous and heterosubtypic lethal challenges. Our results not only accentuate the merit of using live attenuated influenza virus vaccines in view of cross-reactivity but also represent the potential of CApH1N1 live vaccine for mitigating the clinical severity of infections that arise from reassortments between pH1N1 and highly pathogenic H5 subtype viruses.
PLOS ONE | 2012
Hae Jung Park; Boris Ferko; Young Ho Byun; Joo Hye Song; Gye Yeong Han; Elisabeth Roethl; Andrej Egorov; Thomas Muster; Baik-Lin Seong; Mi Na Kweon; Manki Song; Cecil Czerkinsky; Huan H. Nguyen
The nonstructural protein 1 (NS1) of influenza A virus (IAV) enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL) immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments. Here we demonstrate that SL immunization with NS1 deleted IAV (DeltaNS1 H1N1 or DeltaNS1 H5N1) induced protection against challenge with homologous as well as heterosubtypic influenza viruses. Protection was comparable with that induced by intranasal (IN) immunization and was associated with high levels of virus-specific antibodies (Abs). SL immunization with DeltaNS1 virus induced broad Ab responses in mucosal and systemic compartments and stimulated immune cells in mucosa-associated and systemic lymphoid organs. Thus, SL immunization with DeltaNS1 offers a novel potential vaccination strategy for the control of influenza outbreaks including pandemics.
Journal of Virology | 2014
Eun Hye Kim; Hae Jung Park; Gye Yeong Han; Man Ki Song; Alexander Pereboev; Jeong S. Hong; Jun Chang; Young Ho Byun; Baik Lin Seong; Huan H. Nguyen
ABSTRACT Influenza vaccines aimed at inducing antibody (Ab) responses against viral surface hemagglutinin (HA) and neuraminidase (NA) provide sterile immunity to infection with the same subtypes. Vaccines targeting viral conserved determinants shared by the influenza A viruses (IAV) offer heterosubtypic immunity (HSI), a broad protection against different subtypes. We proposed that vaccines targeting both HA and the conserved ectodomain of matrix protein 2 (M2e) would provide protection against infection with the same subtype and also HSI against other subtypes. We report here that single intranasal immunization with a recombinant adenovirus (rAd) vector encoding both HA of H5 virus and M2e (rAdH5/M2e) induced significant HA- and M2e-specific Ab responses, along with protection against heterosubtypic challenge in mice. The protection is superior compared to that induced by rAd vector encoding either HA (rAdH5), or M2e (rAdM2e). While protection against homotypic H5 virus is primarily mediated by virus-neutralizing Abs, the cross-protection is associated with Abs directed to conserved stalk HA and M2e that seem to have an additive effect. Consistently, adoptive transfer of antisera induced by rAdH5/M2e provided the best protection against heterosubtypic challenge compared to that provided by antisera derived from mice immunized with rAdH5 or rAdM2e. These results support the development of rAd-vectored vaccines encoding both H5 and M2e as universal vaccines against different IAV subtypes. IMPORTANCE Current licensed influenza vaccines provide protection limited to the infection with same virus strains; therefore, the composition of influenza vaccines has to be revised every year. We have developed a new universal influenza vaccine that is highly efficient in induction of long-lasting cross-protection against different influenza virus strains. The cross-protection is associated with a high level of vaccine-induced antibodies against the conserved stalk domain of influenza virus hemagglutinin and the ectodomain of matrix protein. The vaccine could be used to stimulate cross-protective antibodies for the prevention and treatment of influenza with immediate effect for individuals who fail to respond to or receive the vaccine in due time. The vaccine offers a new tool to control influenza outbreaks, including pandemics.
Vaccine | 2013
Yo Han Jang; Young Ho Byun; Dong-Hun Lee; Kwang Hee Lee; Yoon Jae Lee; Yun Ha Lee; Jae Keun Park; Chang Seon Song; Baik Lin Seong
The 2009 pandemic influenza H1N1 (pdmH1N1) is characterized by rapid transmission among humans and disproportionate infection to children and young adults. Although the pdmH1N1 demonstrated less lethality than initially expected and has now moved into its post-pandemic period, it remains highly possible that through antigenic shift or antigenic drift the pdmH1N1 might re-emerge in the future as a more virulent strain than before, underscoring the need for vaccination prior to an outbreak. Using X-31 ca as a backbone strain, we generated a live attenuated pdmH1N1 vaccine and evaluated its potential as a safe and effective vaccine using mouse and ferret models. Despite an acceptable level of attenuation phenotypes, single dose of immunization with the vaccine efficiently stimulated both systemic and mucosal antibody responses and provided complete protection against lethal challenge with wild type pdmH1N1 virus, even at the lowest immunization dose of 10(3)PFU. The promising results of safety, immunogenicity, and protective efficacy of the vaccine not only contribute to expanding the repertoire of live vaccines as a judicious choice for pandemic H1N1 preparedness, but also suggest the great potential of X-31 ca donor strain to serve as reliable platform for generating diverse live vaccine constructs against seasonal influenza viruses and other pandemic strains.
Vaccine | 2016
Yo Han Jang; Eun Ju Jung; Kwang Hee Lee; Young Ho Byun; Seung Won Yang; Baik Lin Seong
Cold-adapted live attenuated influenza vaccines (CAIVs) have been considered as a safe prophylactic measure to prevent influenza virus infections. The safety of a CAIV depends largely on genetic markers that confer specific attenuation phenotypes. Previous studies with other CAIVs reported that polymerase genes were primarily responsible for the attenuation. Here, we analyzed the genetic mutations and their phenotypic contribution in the X-31 ca strain, a recently developed alternative CAIV donor strain. During the cold-adaptation of its parental X-31 virus, various numbers of sequence changes were accumulated in all six internal genes. Phenotypic analysis with single-gene and multiple-gene reassortant viruses suggests that NP gene makes the largest contribution to the cold-adapted (ca) and temperature-sensitive (ts) characters, while the remaining other internal genes also impart attenuation characters with varying degrees. A balanced contribution of all internal genes to the attenuation suggests that X-31 ca could serve as an ideal master donor strain for CAIVs preventing influenza epidemics and pandemics.
Vaccine | 2014
Yo Han Jang; Eun Young Lee; Young Ho Byun; Eun Ju Jung; Yoon Jae Lee; Yun Ha Lee; Kwang Hee Lee; Jinhee Lee; Baik Lin Seong
Influenza virus continues to take a heavy toll on human health and vaccination remains the mainstay of efforts to reduce the clinical impact imposed by viral infections. Proven successful for establishing live attenuated vaccine donor strains, cold-adapted live attenuated influenza vaccines (CAIVs) have become an attractive modality for controlling the virus infection. Previously, we developed the cold-adapted strains A/X-31 and B/Lee/40 as novel donor strains of CAIVs against influenza A and B viruses. In this study, we investigated the protective immune responses of both mono- and trivalent vaccine formulations in the mouse model. Two type A vaccines and one type B vaccine against A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), and B/Shangdong/7/97 in the background of the A/X-31 ca or B/Lee/40 ca were generated by a reassortment procedure and evaluated for their immunogenicity and protective efficacy. Each monovalent vaccine elicited high levels of serum antibodies and conferred complete protection against homologous wild type virus infection. As compared to the monovalent vaccines, trivalent formulation induced higher levels of type A-specific serum antibodies and slightly lower levels of type B-specific antibodies, suggesting an immunological synergism within type A viruses and an interference in the replication of type B virus. Relatively lower type B-specific immunogenicity in trivalent vaccine formulation could be effectively implemented by increasing the vaccine dose of influenza B virus. These results of immunogenicity, protection efficacy, and immunological synergism between type A vaccines provide an experimental basis for optimal composition of trivalent vaccines for subsequent developments of multivalent CAIVs against seasonal and pandemic influenza viruses.
Vaccine | 2013
Yo Han Jang; Eun Ju Jung; Young Ho Byun; Kwang Hee Lee; Eun Young Lee; Yoon Jae Lee; Baik Lin Seong
Despite global efforts to control influenza viruses, they have taken a heavy toll on human public health worldwide. Among particular threats is highly pathogenic avian H5N1 influenza virus (HPAI) due to not only its high mortality in humans but also possible human-to-human transmission either through reassortment with other human influenza viruses such as 2009 pandemic H1N1 influenza virus, or by genetic mutations. With the aim of developing effective vaccines against the H5N1 viruses, we generated two live attenuated H5N1 vaccine candidates against A/Indonesia/05/2005 (clade 2.1) and A/chicken/Korea/ES/2003 (clade 2.5) strains, in the genetic background of the cold-adapted donor strain of X-31. In mice, a single dose of immunization with each of the two vaccines was highly immunogenic inducing high titers of serum viral-neutralizing and hemagglutinin-inhibiting antibodies against the homologous H5N1 strain. Furthermore, significant levels of cross-clade antibody responses were induced by the vaccines, suggesting a broad-spectrum cross-reactivity against the heterologous H5N1 strains. The immunizations provided solid protections against heterologous lethal challenges with H5N2 virus, significantly reducing the morbidity and challenge virus replications in the respiratory tracts. The robustness of the antibody responses against both the homologous and heterologous strains, together with efficient protection against the lethal H5N2 challenge, strongly support the protection against wild type H5N1 infections. These results could serve as an experimental basis for the development of safe and effective H5N1 pre-pandemic vaccines while further addressing the biosecurity concerns associated with H5N1 HPAI.