Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young-Hui Chang is active.

Publication


Featured researches published by Young-Hui Chang.


The Journal of Experimental Biology | 2007

Limitations to maximum running speed on flat curves

Young-Hui Chang; Rodger Kram

SUMMARY Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance.


The Journal of Experimental Biology | 2009

Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury

Young-Hui Chang; Arick G. Auyang; John P. Scholz; T. Richard Nichols

SUMMARY Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function.


American Journal of Physical Anthropology | 2000

External forces and torques generated by the brachiating white-handed gibbon (Hylobates lar).

Young-Hui Chang; John E. A. Bertram; David V. Lee

We compared the kinetics of brachiation to bipedal walking and running. Gibbons use pectoral limbs in continuous contact with their overhead support at slow speeds, but exhibit aerial phases (or ricochetal brachiation) at faster speeds. This basic interaction between limb and support suggests some analogy to walking and running. We quantified the forces in three axes and torque about the vertical axis generated by a brachiating White-handed gibbon (Hylobates lar) and compared them with bipedal locomotion. Handholds oriented perpendicular to the direction of travel (as in ladder rungs) were spaced 0.80, 1.20, 1.60, 1.72, 1.95, and 2.25 m apart. The gibbon proportionally matched forward velocity to stride length. Handhold reaction forces resembled ground reaction forces of running humans except that the order of horizontal braking and propulsion were reversed. Peak vertical forces in brachiation increased with speed as in bipedal locomotion. In contrast to bipedalism, however, peak horizontal forces changed little with speed. Gait transition occurred within the same relative velocity range as the walk-run transition in bipeds (Froude number = 0.3-0.6). We oriented handholds parallel to the direction of travel (as in a continuous pole) at 0.80 and 1.60 m spacings. In ricochetal brachiation, the gibbon generated greater torque with handholds oriented perpendicular as opposed to parallel to the direction of travel. Handhold orientation did not affect peak forces. The similarities and differences between brachiation and bipedalism offer insight into the ubiquity of mechanical principles guiding all limbed locomotion and the distinctiveness of brachiation as a unique mode of locomotion.


Journal of the Royal Society Interface | 2010

Rate-dependent control strategies stabilize limb forces during human locomotion

Jasper T. Yen; Young-Hui Chang

A spring-mass model accurately predicts centre of mass dynamics for hopping and running animals and is pervasive throughout experimental and theoretical studies of legged locomotion. Given the neuromechanical complexity of the leg, it remains unclear how joint dynamics are selected to achieve such simple centre of mass movements consistently from step to step and across changing conditions. Human hopping is a tractable experimental model to study how net muscle moments, or joint torques, are coordinated for spring-mass dynamics, which include stable, or invariant, vertical ground forces. Subjects were equally able to stabilize vertical forces at all hopping frequencies (2.2, 2.8, 3.2 Hz) by selecting force-equivalent joint torque combinations. Using a hybrid-uncontrolled manifold permutation analysis, however, we discovered that force stabilization relies less on interjoint coordination at greater hopping frequencies and more on selection of appropriate ankle joint torques. We conclude that control strategies for selecting the joint torques that stabilize forces generated on the ground are adjusted to the rate of movement. Moreover, this indicates that legged locomotion may involve the differential regulation of several redundant motor control strategies that are accessed as needed to match changing environmental conditions.


Journal of Neuroscience Methods | 2010

High-speed X-ray video demonstrates significant skin movement errors with standard optical kinematics during rat locomotion

Jay M. Bauman; Young-Hui Chang

The sophistication of current rodent injury and disease models outpaces that of the most commonly used behavioral assays. The first objective of this study was to measure rat locomotion using high-speed X-ray video to establish an accurate baseline for rat hindlimb kinematics. The second objective was to quantify the kinematics errors due to skin movement artefacts by simultaneously recording and comparing hindlimb kinematics derived from skin markers and from direct visualization of skeletal landmarks. Joint angle calculations from skin-derived kinematics yielded errors as high as 39 degrees in the knee and 31 degrees in the hip around paw contact with respect to the X-ray data. Triangulation of knee position from the ankle and hip skin markers provided closer, albeit still inaccurate, approximations of bone-derived, X-ray kinematics. We found that soft tissue movement errors are the result of multiple factors, the most impressive of which is overall limb posture. Treadmill speed had surprisingly little effect on kinematics errors. These findings illustrate the significance and context of skin movement error in rodent kinematics.


Journal of Biomechanics | 2008

Intralimb compensation strategy depends on the nature of joint perturbation in human hopping

Young-Hui Chang; Ronald A. Roiz; Arick G. Auyang

Due to the well-described spring-mass dynamics of bouncing gaits, human hopping is a tractable model for elucidating basic neuromuscular compensation principles. We tested whether subjects would employ a multi-joint or single-joint response to stabilize leg stiffness while wearing a spring-loaded ankle-foot orthosis (AFO) that applied localized resistive and assistive torques to the ankle. We analyzed kinematics and kinetics data from nine subjects hopping in place on one leg, at three frequencies (2.2, 2.4, and 2.8Hz) and three orthosis conditions (freely articulating AFO, AFO with plantarflexion resistance, and AFO with plantarflexion assistance). Leg stiffness was invariant across AFO conditions, however, compensation strategy depended upon the nature of the applied load. Biological ankle stiffness increased in response to a resistive load at twice the rate that it decreased with an assitive load. Ankle adjustments alone fully compensated for an assistive load with no net change in combined (biological plus applied) total ankle stiffness (p > or =0.133). In contrast, a resistive load resulted in a 7.4-9.0% increase in total ankle stiffness across frequencies and a concomitant 10-15% increase in knee joint stiffness at each frequency (p< or =0.037). The increased knee joint stiffness in response to resistive ankle load allowed subjects to maintain a more flexed knee at mid-stance, which attenuated the effect of the increased total ankle joint stiffness to preserve leg stiffness and whole limb biomechanical performance. Our findings suggest humans maintain invariant leg stiffness in bouncing gaits through different intralimb compensation strategies that are specific to the nature of the joint loading.


Journal of Neurophysiology | 2009

An In Vitro Spinal Cord–Hindlimb Preparation for Studying Behaviorally Relevant Rat Locomotor Function

Heather Brant Hayes; Young-Hui Chang; Shawn Hochman

Although the spinal cord contains the pattern-generating circuitry for producing locomotion, sensory feedback reinforces and refines the spatiotemporal features of motor output to match environmental demands. In vitro preparations, such as the isolated rodent spinal cord, offer many advantages for investigating locomotor circuitry, but they lack the natural afferent feedback provided by ongoing locomotor movements. We developed a novel preparation consisting of an isolated in vitro neonatal rat spinal cord oriented dorsal-up with intact hindlimbs free to step on a custom-built treadmill. This preparation combines the neural accessibility of in vitro preparations with the modulatory influence of sensory feedback from physiological hindlimb movement. Locomotion induced by N-methyl D-aspartate and serotonin showed kinematics similar to that of normal adult rat locomotion. Changing orientation and ground interaction (dorsal-up locomotion vs ventral-up air-stepping) resulted in significant kinematic and electromyographic changes that were comparable to those reported under similar mechanical conditions in vivo. We then used two mechanosensory perturbations to demonstrate the influence of sensory feedback on in vitro motor output patterns. First, swing assistive forces induced more regular, robust muscle activation patterns. Second, altering treadmill speed induced corresponding changes in stride frequency, confirming that changes in sensory feedback can alter stride timing in vitro. In summary, intact hindlimbs in vitro can generate behaviorally appropriate locomotor kinematics and responses to sensory perturbations. Future studies combining the neural and chemical accessibility of the in vitro spinal cord with the influence of behaviorally appropriate hindlimb movements will provide further insight into the operation of spinal motor pattern-generating circuits.


Journal of Neuroscience Methods | 2010

Autogenic EMG-Controlled Functional Electrical Stimulation for Ankle Dorsiflexion Control

Hojun Yeom; Young-Hui Chang

Our objectives were to develop and test a new system for the potential for stable, real-time cancellation of residual stimulation artefacts (RSA) using surface electrode autogenic electromyography-controlled functional electrical stimulator (aEMGcFES). This type of closed-loop FES could be used to provide more natural, continuous control of lower extremity paretic muscles. We built upon work that has been done in the field of FES with one major technological innovation, an adaptive Gram-Schmidt filtering algorithm, which allowed us to digitally cancel RSA in real-time. This filtering algorithm resulted in a stable real-time estimation of the volitional intent of the stimulated muscle, which then acted as the direct signal for continuously controlling homonymous muscle stimulation. As a first step toward clinical application, we tested the viability of our aEMGcFES system to continuously control ankle dorsiflexion in a healthy subject. Our results indicate positively that an aEMGcFES device with adaptive filtering can respond proportionally to voluntary EMG and activate forceful movements to assist dorsiflexion during controlled isometric activation at the ankle. We also verified that normal ankle joint range of movement could be maintained while using the aEMGcFES system. We suggest that real-time cancellation of both primary and RSA is possible with surface electrode aEMGcFES in healthy subjects and shows promising potential for future clinical application to gait pathologies such as drop foot related to hemiparetic stroke.


Experimental Brain Research | 2009

Joint-level kinetic redundancy is exploited to control limb-level forces during human hopping

Jasper T. Yen; Arick G. Auyang; Young-Hui Chang

Compensatory mechanisms can take advantage of neuromechanical redundancy to meet global task goals in spite of local injuries or perturbations. We hypothesized that joint-level kinetic redundancy is also exploited during intact, unperturbed human locomotion to accomplish limb-level force goals. The limb-level force goals of hopping in place at a constant frequency are minimizing cycle-to-cycle variance of vertical ground reaction force and varying horizontal (fore-aft) ground reaction force to make backward and forward corrections in position from cycle to cycle. Uncontrolled Manifold analysis of joint torque variance showed that hoppers exploited redundancy to minimize vertical force variance at landing, mid-stance, and takeoff, and to vary horizontal force at landing and takeoff. Timing fluctuations, however, increased vertical force variance. We conclude that joint torque variance is not random noise, but has functional relevance and is purposefully structured to meet specific locomotor goals.


Journal of Biomechanics | 2001

Applied horizontal force increases impact loading in reduced-gravity running

Young-Hui Chang; Chris M. Hamerski; Rodger Kram

The chronic exposure of astronauts to microgravity results in structural degradation of their lower limb bones. Currently, no effective exercise countermeasure exists. On Earth, the impact loading that occurs with regular locomotion is associated with the maintenance of bones structural integrity, but impact loads are rarely experienced in space. Accurately mimicking Earth-like impact loads in a reduced-gravity environment should help to reduce the degradation of bone caused by weightlessness. We previously showed that running with externally applied horizontal forces (AHF) in the anterior direction qualitatively simulates the high-impact loading associated with downhill running on Earth. We hypothesized that running with AHF at simulated reduced gravity would produce impact loads equal to or greater than values experienced during normal running at Earth gravity. With an AHF of 20% of gravity-specific body weight at all gravity levels, impact force peaks increased 74%, average impact loading rates increased 46%, and maximum impact loading rates increased 89% compared to running without any AHF. In contrast, AHF did not substantially affect active force peaks. Duty factor and stride frequency decreased modestly with AHF at all gravity levels. We found that running with an AHF in simulated reduced gravity produced impact loads equal to or greater than those experienced at Earth gravity. An appropriate AHF could easily augment existing partial gravity treadmill running exercise countermeasures used during spaceflight and help prevent musculoskeletal degradation.

Collaboration


Dive into the Young-Hui Chang's collaboration.

Top Co-Authors

Avatar

Brian P. Selgrade

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rodger Kram

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arick G. Auyang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jasper T. Yen

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jay M. Bauman

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Megan E. Toney

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge