Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young Jae Moon is active.

Publication


Featured researches published by Young Jae Moon.


PLOS ONE | 2013

Tumor infiltrating PD1-positive lymphocytes and the expression of PD-L1 predict poor prognosis of soft tissue sarcomas.

Jung Ryul Kim; Young Jae Moon; Keun Sang Kwon; Jun Sang Bae; Sajeev Wagle; Kyoung Min Kim; Ho Sung Park; Ho Lee; Woo Sung Moon; Myoung Ja Chung; Myoung Jae Kang; Kyu Yun Jang

Recently, the possibility of PD1 pathway-targeted therapy has been extensively studied in various human malignant tumors. However, no previous study has investigated their potential application for soft-tissue sarcomas (STS). In this study, we evaluated the clinical impact of intra-tumoral infiltration of PD1-positive lymphocytes and PD-L1 expression in tumor cells in 105 cases of STS. Intra-tumoral infiltration of PD1-positive lymphocytes and PD-L1 expression were seen in 65% and 58% of STS, respectively. Both PD1-positivity and PD-L1 expression were significantly associated with advanced clinicopathological parameters such as higher clinical stage, presence of distant metastasis, higher histological grade, poor differentiation of tumor, and tumor necrosis. Moreover, both PD1-positivity and PD-L1 positivity were independent prognostic indicators of overall survival (OS) and event-free survival (EFS) of STS by multivariate analysis. In addition, the combined pattern of PD1- and PD-L1-positivity was also an independent prognostic indicator for OS and EFS by multivariate analysis. The patents with a PD1+/PD-L1+ pattern had the shortest survival time. In conclusion, this study is the first to demonstrate that the infiltration of PD1 positive lymphocytes and PD-L1 expression in STS cells could be used as novel prognostic indicators for STS. Moreover, the evaluation of PD1- and PD-L1-positivity in STS is also available as possible criteria for selection of patients suitable for PD1-based immunotherapy.


PLOS ONE | 2013

Expression of SIRT1 and DBC1 Is Associated with Poor Prognosis of Soft Tissue Sarcomas

Jung Ryul Kim; Young Jae Moon; Keun Sang Kwon; Jun Sang Bae; Sajeev Wagle; Taek Kyun Yu; Kyoung Min Kim; Ho Sung Park; Ju-Hyung Lee; Woo Sung Moon; Ho Lee; Myoung Ja Chung; Kyu Yun Jang

Recently, the roles of SIRT1 and deleted in breast cancer 1 (DBC1) in human cancer have been extensively studied and it has been demonstrated that they are involved in many human carcinomas. However, their clinical significance for soft-tissue sarcomas has not been examined. In this study, we evaluated the expression and prognostic significance of the expression of SIRT1, DBC1, P53, β-catenin, cyclin D1, and KI67 in 104 cases of soft-tissue sarcomas. RESULTS: Immunohistochemical expression of SIRT1, DBC1, P53, β-catenin, and cyclin D1 were seen in 71%, 74%, 53%, 48%, and 73% of sarcomas, respectively. The expression of SIRT1, DBC1, P53, β-catenin, and cyclin D1 were significantly correlated with advanced clinicopathological parameters such as higher clinical stage, higher histological grade, increased mitotic counts, and distant metastasis. The expression of SIRT1, DBC1, P53, β-catenin, cyclin D1, and KI67 were significantly correlated with each other and positive expression of all of these predicted shorter overall survival and event-free survival by univariate analysis. Multivariate analysis revealed the expression of SIRT1 as an independent prognostic indicator for overall survival and event-free survival of sarcoma patients. In conclusion, this study demonstrates that SIRT1- and DBC1-related pathways may be involved in the progression of soft-tissue sarcomas and can be used as clinically significant prognostic indicators for sarcoma patients. Moreover, the SIRT1- and DBC1-related pathways could be new therapeutic targets for the treatment of sarcomas.


Scientific Reports | 2015

DBC1/CCAR2 is involved in the stabilization of androgen receptor and the progression of osteosarcoma

Sajeev Wagle; See-Hyoung Park; Kyoung Min Kim; Young Jae Moon; Jun Sang Bae; Keun Sang Kwon; Ho Sung Park; Ho Lee; Woo Sung Moon; Jung Ryul Kim; Kyu Yun Jang

Deleted in breast cancer 1 (DBC1/CCAR2) is a protein of interest because of its diverse roles in tumorigenesis and its possible role as an androgen receptor (AR) co-activator. However, there are limited studies on the role of DBC1 in osteosarcoma. Therefore, we investigated the role of DBC1 and AR and their relationship in osteosarcoma. Immunohistochemical expression of DBC1 and AR was significantly associated with higher clinical stage and higher histologic grade, and predicted shorter survival. Especially, DBC1 expression was an independent prognostic indicator of overall survival (p = 0.005) and relapse-free survival (p = 0.004) by multivariate analysis. In osteosarcoma cell lines, U2OS and SaOS2, the knock down of DBC1 and AR with siRNA significantly reduced cellular proliferation and inhibited proliferation-related signaling. In addition, the knock down of DBC1 and AR decreased the invasion activity and inhibited invasion-related signaling of osteosarcoma cells. Interestingly, DBC1 affects the stabilization of AR protein via a mechanism involving the ubiquitination of AR. Proteosome-mediated degradation and poly-ubiquitination of AR were increased with the knock-down of DBC1. In conclusion, this study has shown that DBC1 is involved in the stabilization of AR protein and DBC1-AR pathways might be involved in the progression of osteosarcoma.


Experimental and Molecular Medicine | 2016

Smad4 controls bone homeostasis through regulation of osteoblast/osteocyte viability

Young Jae Moon; Chi-Young Yun; Hwajung Choi; Sun-O Ka; Jung Ryul Kim; Byung-Hyun Park; Eui-Sic Cho

Regulation of osteoblast and osteocyte viability is essential for bone homeostasis. Smad4, a major transducer of bone morphogenetic protein and transforming growth factor-β signaling pathways, regulates apoptosis in various cell types through a mitochondrial pathway. However, it remains poorly understood whether Smad4 is necessary for the regulation of osteoblast and osteocyte viability. In this study, we analyzed Smad4ΔOs mice, in which Smad4 was subjected to tissue-specific disruption under the control of the 2.3-kb Col1a1 promoter, to understand the functional significance of Smad4 in regulating osteoblast/osteocyte viability during bone formation and remodeling. Smad4ΔOs mice showed a significant increase in osteoblast number and osteocyte density in the trabecular and cortical regions of the femur, whereas osteoclast activity was significantly decreased. The proliferation of osteoblasts/osteocytes did not alter, as shown by measuring 5′-bromo-2′deoxyuridine incorporation. By contrast, the percentage of TUNEL-positive cells decreased, together with a decrease in the Bax/Bcl-2 ratio and in the proteolytic cleavage of caspase 3, in Smad4ΔOs mice. Apoptosis in isolated calvaria cells from Smad4ΔOs mice decreased after differentiation, which was consistent with the results of the TUNEL assay and western blotting in Smad4ΔOs mice. Conversely, osteoblast cells overexpressing Smad4 showed increased apoptosis. In an apoptosis induction model of Smad4ΔOs mice, osteoblasts/osteocytes were more resistant to apoptosis than were control cells, and, consequently, bone remodeling was attenuated. These findings indicate that Smad4 has a significant role in regulating osteoblast/osteocyte viability and therefore controls bone homeostasis.


PLOS ONE | 2014

COMP-angiopoietin1 potentiates the effects of bone morphogenic protein-2 on ischemic necrosis of the femoral head in rats.

Lu Zhou; Sun Jung Yoon; Kyu Yun Jang; Young Jae Moon; Sajeev Wagle; Kwang Bok Lee; Byung-Hyun Park; Jung Ryul Kim

Angiogenesis is considered essential for proper bone regeneration. The purpose of this investigation was to determine if a combined therapy of bone morphogenetic protein-2 (BMP-2) and cartilage oligomeric matrix protein angiopoietin-1 (COMP-Ang1) can potentiate the therapeutic effect of BMP-2 in a rat model of ischemic necrosis of the femoral head (INFH). INFH was surgically induced in the femoral head of rats, and the animals were divided into the following groups: 1) a sham-operated group (sham group), 2) a bovine serum albumin-injected group (BSA group), 3) a BMP-2-injected group (BMP-2 group), and 4) a COMP-Ang1 and BMP-2-injected group (COMP-Ang1 + BMP-2 group) (n = 20/group). Radiologic, histologic, and histomorphometric assessments were performed to assess femoral head morphology, vascular density, and bone resorption activity. Western blots and immunohistochemical staining were performed to evaluate production of BMP-related signaling proteins in C3H10T1/2 cells and tissues. Real-time RT-PCR was performed to investigate expression of the target integrin gene, and the effect of integrin on C3H10T1/2 cells was determined using a cell adhesion assay. Radiographs obtained six weeks after injection revealed better preservation of the architecture of the femoral head in the COMP-Ang1 + BMP-2 group compared with the BSA and BMP-2 groups. Histological findings indicated increased trabecular bone and vascularity and decreased osteoclast bone resorption activity in the COMP-Ang1 + BMP-2 group compared with those in the BSA and BMP-2 groups. The combination of COMP-Ang1 and BMP-2 increased phosphorylation of Smad1/3/5, p38, and Akt. Increased integrin α3 and β1 mRNA expression in the COMP-Ang1 + BMP-2 group promoted cell adhesion. These results suggest that COMP-Ang1 preserved the necrotic femoral head through the potentiation of BMP-2 signaling pathways and angiogenesis. Combination treatment with COMP-Ang1 and BMP-2 may be a clinically useful therapeutic application in INFH.


PLOS ONE | 2016

Individual and Combined Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predict Shorter Survival of Soft Tissue Sarcoma Patients

Kyoung Min Kim; Young Jae Moon; See-Hyoung Park; Hye Jeong Park; Sung Il Wang; Ho Sung Park; Ho Lee; Keun Sang Kwon; Woo Sung Moon; Dong Geun Lee; Jung Ryul Kim; Kyu Yun Jang

DNA damage response (DDR) molecules are protective against genotoxic stresses. DDR molecules are also involved in the survival of cancer cells in patients undergoing anti-cancer therapies. Therefore, DDR molecules are potential markers of cancer progression in addition to being potential therapeutic targets. In this study, we evaluated the immunohistochemical expression of PARP1, γH2AX, BRCA1, and BRCA2 and their prognostic significance in 112 cases of soft tissue sarcoma (STS). The expression of PARP1, γH2AX, BRCA1, and BRCA2 were significantly associated with each other and were associated with higher tumor stage and presence of distant metastasis. The expression of PARP1, γH2AX, and BRCA2 were significantly associated with shorter disease-specific survival (DSS) and event-free survival (EFS) by univariate analysis. BRCA1 expression was associated with shorter DSS. Multivariate analysis revealed the expression of PARP1 and γH2AX to be independent indicators of poor prognosis of DSS and EFS. BRCA2 expression was an independent indicator of poor prognosis of DSS. In addition, the combined expressional patterns of PARP1, γH2AX, BRCA1, and BRCA2 (CSddrm) were independent prognostic predictors of DSS (P < 0.001) and EFS (P = 0.016). The ten-year DSS rate of the CSddrm-low, CSddrm-intermediate, and CSddrm-high subgroups were 81%, 26%, and 0%, respectively. In conclusion, this study demonstrates that the individual and combined expression patterns of the DDR molecules PARP1, γH2AX, BRCA1, and BRCA2 could be predictive of the prognosis of STS patients and suggests that controlling the activity of these DDR molecules could be employed in new therapeutic stratagems for the treatment of STS.


Scientific Reports | 2015

Leptin ameliorates ischemic necrosis of the femoral head in rats with obesity induced by a high-fat diet

Lu Zhou; Kyu Yun Jang; Young Jae Moon; Sajeev Wagle; Kyoung Min Kim; Kwang Bok Lee; Byung-Hyun Park; Jung Ryul Kim

Obesity is a risk factor for ischemic necrosis of the femoral head (INFH). The purpose of this study was to determine if leptin treatment of INFH stimulates new bone formation to preserve femoral head shape in rats with diet-induced obesity. Rats were fed a high-fat diet (HFD) or normal chow diet (NCD) for 16 weeks to induce progressive development of obesity. Avascular necrosis of the femoral head (AVN) was surgically induced. Adenovirus-mediated introduction of the leptin gene was by intravenous injection 2 days before surgery-induced AVN. At 6 weeks post-surgery, radiologic and histomorphometric assessments were performed. Leptin signaling in tissues was examined by Western blot. Osteogenic markers were analyzed by real-time RT-PCR. Radiographs showed better preservation of femoral head architecture in the HFD-AVN-Leptin group than the HFD-AVN and HFD-AVN-LacZ groups. Histology and immunohistochemistry revealed the HFD-AVN-Leptin group had significantly increased osteoblastic proliferation and vascularity in infarcted femoral heads compared with the HFD-AVN and HFD-AVN-LacZ groups. Intravenous injection of leptin enhanced serum VEGF levels and activated HIF-1α pathways. Runx 2 and its target genes were significantly upregulated in the HFD-AVN-Leptin group. These results indicate that leptin resistance is important in INFH pathogenesis. Leptin therapy could be a new strategy for INFH.


Journal of Molecular Histology | 2016

Maturation of cortical bone suppresses periosteal osteoprogenitor proliferation in a paracrine manner

Young Jae Moon; Chi-Young Yun; Jeong-Chae Lee; Jung Ryul Kim; Byung-Hyun Park; Eui-Sic Cho

Periosteum contains enriched pools of osteogenic progenitors and is highly proliferative, thus giving this tissue a pivotal role in maintaining the diameter of the diaphyseal cortex and in recovery from fractures. Although periosteal proliferation has not been detected in normal bone, intense periosteal proliferation has been observed in pathologic states such as fracture, inflammation, and bone tumors. However, the mechanism by which periosteal osteoprogenitor proliferation is regulated remains poorly understood. To investigate this regulation mechanism, osteoblast/osteocyte-specific conditional knockout mice were developed lacking Smad4 and Osx, two factors that are essential for osteoblast differentiation and matrix mineralization. In Smad4Col and OsxCol mice, osteocalcin, Dmp-1, and sclerostin expression were significantly decreased in the cortical bone. Interestingly, although Cre activity was not observed in the periosteum, the proliferation of periosteal osteoprogenitors was enhanced in Smad4Col and OsxCol mice, as assessed by 5′-bromo-2′deoxyuridine incorporation and proliferating cell nuclear antigen localization. Since Wnt signaling is a major factor affecting periosteal proliferation, we evaluated Wnt signaling in the periosteum. The expression levels of β-catenin and Lef-1 were increased in the periosteal osteoprogenitors. Moreover, the mRNA levels of β-catenin, cyclin D1, Lef-1, and Axin2, all of which are Wnt target genes, were significantly increased in the periosteum of both Smad4Col and OsxCol mice. These results indicated that extracellular proteins secreted by mature osteoblasts and osteocytes suppress the proliferation of periosteal osteoprogenitors by blocking Wnt signaling in a paracrine manner. Our data suggest a new concept of periosteal bone healing and periosteal bone formation.


Oncotarget | 2018

Interferon β protects against avascular osteonecrosis through interleukin 6 inhibition and silent information regulator transcript-1 upregulation

Kyoung Min Kim; Sajeev Wagle; Young Jae Moon; Sung Il Wang; Byung-Hyun Park; Kyu Yun Jang; Jung Ryul Kim

Synovitis of the affected joint is a common in avascular osteonecrosis (AVN). Increased levels of pro-inflammatory cytokine interleukin-6 (IL-6) have been reported in AVN, but the mechanism of this increase remains unclear. Silent information regulator transcript-1 (SIRT1), an NAD-dependent deacetylase, inhibits the release of inflammatory cytokines. Interferon β (IFN-β) has clear anti-inflammatory properties. We sought to investigate the effects of IFN-β treatment on AVN and to evaluate the specific signal pathway relating to IL-6 and SIRT1 affected during AVN. Using a dissection microscope, AVN was surgically induced in the distal femurs of mice. Exogenous IFN-β was administered to the model mice. The effects of exogenous IFN-β on AVN model mice were assessed using hematoxylin eosin and safranin-O staining, and bone resorption activity was measured using tartrate-resistant acid phosphatase (TRAP) and CD68 staining. Western blots, real-time RT-PCR, and immunohistochemical staining were performed to evaluate the production of SIRT1 and IL-6 in tissues. The RAW 264.7 cell line and bone marrow derived osteoclasts treated with exogenous IFN-β. Histological findings indicated well preserved trabecular bone and decreased osteoclast bone resorption activity in IFN-β treated mice compared with mice in the AVN group. Treatment with IFN-β increased SIRT1 expression and inhibited secretion of IL-6 in this AVN mouse model. IFN-β decreased IL-6 secretion by activating SIRT1 in the RAW 264.7 cell and bone marrow derived osteoclasts. Our work suggests that IFN-β could be used to treat AVN and that both SIRT1 and IL-6 are useful targets for treating patients with AVN.


Journal of Experimental & Clinical Cancer Research | 2018

The PARP inhibitor olaparib potentiates the effect of the DNA damaging agent doxorubicin in osteosarcoma

Hye Jeong Park; Jun Sang Bae; Kyoung Min Kim; Young Jae Moon; See-Hyoung Park; Sang Hoon Ha; Usama Khamis Hussein; Zhongkai Zhang; Ho Sung Park; Byung-Hyun Park; Woo Sung Moon; Jung Ryul Kim; Kyu Yun Jang

BackgroundPARP1 facilitates the recovery of DNA-damaged cells by recruiting DNA damage response molecules such as γH2AX and BRCA1/2, and plays a role in resistance to antitumor therapies. Therefore, PARP inhibition being evaluated as an anti-cancer therapy. However, there are limited studies regrading PARP inhibition in osteosarcoma.MethodsWe evaluated the expression of DNA damage response molecules in 35 human osteosarcomas and investigated the effects of co-treatment of the PARP inhibitor, olaparib, and doxorubicin in osteosarcoma cells.ResultsThe expression patterns of PARP1, γH2AX, BRCA1, and BRCA2 were significantly associated with shorter survival of osteosarcoma patients. In osteosarcoma cells, knock-down of PARP1 and treatment of olaparib significantly inhibited proliferation of cells and induced apoptosis. Moreover, the anti-tumor effect was more significant with co-treatment of olaparib and doxorubicin in vitro and in vivo.ConclusionsThis study suggests that combined use of a PARP inhibitor with doxorubicin, a DNA damaging agent, might be effective in the treatment of osteosarcoma patients, especially in the poor-prognostic subgroups of osteosarcoma expressing PARP1, γH2AX, or BRCA1/2.

Collaboration


Dive into the Young Jae Moon's collaboration.

Top Co-Authors

Avatar

Jung Ryul Kim

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Kyu Yun Jang

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Kyoung Min Kim

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Byung-Hyun Park

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Sung Il Wang

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Sajeev Wagle

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Ho Sung Park

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Keun Sang Kwon

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Woo Sung Moon

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Ho Lee

Chonbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge