Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young-Jae Si is active.

Publication


Featured researches published by Young-Jae Si.


Emerging microbes & infections | 2014

Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.

Young-Il Kim; Philippe Noriel Q. Pascua; Hyeok-il Kwon; Gyo-Jin Lim; Eun-Ha Kim; Sun-Woo Yoon; Su-Jin Park; Se Mi Kim; Eun-Ji Choi; Young-Jae Si; Ok-Jun Lee; Woo-Sub Shim; Si-Wook Kim; In-Pil Mo; Yeonji Bae; Yong Taik Lim; Moon-Hee Sung; Chul-Joong Kim; Richard J. Webby; Robert G. Webster; Young Ki Choi

The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.


Clinical Infectious Diseases | 2016

Environmental Contamination and Viral Shedding in MERS Patients During MERS-CoV Outbreak in South Korea

Seo Yu Bin; Jung Yeon Heo; Min-Suk Song; Jacob Lee; Eun-Ha Kim; Su-Jin Park; Hyeok-il Kwon; Se Mi Kim; Young-Il Kim; Young-Jae Si; In-Won Lee; Yun Hee Baek; Won Suk Choi; Jinsoo Min; Hye Won Jeong; Young Ki Choi

Viable Middle East Respiratory Syndrome coronavirus (MERS-CoV) could be isolated from the environment surfaces and respiratory specimens from clinically recovered patients. Our results suggested that MERS-CoV can be transmitted through contaminated fomites, hence strict environmental hygiene, and sufficient isolation period are essential for MERS-CoV control.


Eurosurveillance | 2017

Genetic characterisation of novel, highly pathogenic avian influenza (HPAI) H5N6 viruses isolated in birds, South Korea, November 2016

Young-Jae Si; In-Won Lee; Eun-Ha Kim; Young-Il Kim; Hyeok-il Kwon; Su-Jin Park; Hiep Dinh Nguyen; Se Mi Kim; Jin-Jung Kwon; Won-Suk Choi; Yun Hee Beak; Min-Suk Song; Chul-Joong Kim; Richard J. Webby; Young Ki Choi

A novel genotype of H5N6 influenza viruses was isolated from migratory birds in South Korea during November 2016. Domestic outbreaks of this virus were associated with die-offs of wild birds near reported poultry cases in Chungbuk province, central South Korea. Genetic analysis and animal studies demonstrated that the Korean H5N6 viruses are highly pathogenic avian influenza (HPAI) viruses and that these viruses are novel reassortants of at least three different subtypes (H5N6, H4N2 and H1N1).


Infection, Genetics and Evolution | 2017

Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea

Young-Il Kim; Su-Jin Park; Hyeok-il Kwon; Eun-Ha Kim; Young-Jae Si; Ju-Hwan Jeong; In-Won Lee; Hiep Dinh Nguyen; Jin-Jung Kwon; Won-Suk Choi; Min-Suk Song; Chul-Joong Kim; Young Ki Choi

During the outbreaks of highly pathogenic avian influenza (HPAI) H5N6 viruses in 2016 in South Korea, novel H5N8 viruses were also isolated from migratory birds. Phylogenetic analysis revealed that the HA gene of these H5N8 viruses belonged to clade 2.3.4.4, similarly to recent H5Nx viruses, and originated from A/Brk/Korea/Gochang1/14(H5N8), a minor lineage of H5N8 that appeared in 2014 and then disappeared. At least four reassortment events occurred with different subtypes (H5N8, H7N7, H3N8 and H10N7) and a chicken challenge study revealed that they were classified as HPAI viruses according to OIE criteria.


Archives of Virology | 2016

Genetic characteristics of highly pathogenic H5N8 avian influenza viruses isolated from migratory wild birds in South Korea during 2014-2015

Young-Jae Si; Won-Suk Choi; Young-Il Kim; In-Won Lee; Hyeok-il Kwon; Su-Jin Park; Eun-Ha Kim; Se Mi Kim; Jin-Jung Kwon; Min-Suk Song; Chul-Joong Kim; Young Ki Choi

The continuous worldwide spread of highly pathogenic avian influenza (HPAI) H5N8 viruses among wild birds and poultry is a potential threat to public health. In the present study, we investigated the genetic characteristics of recent H5N8 viruses continuously isolated from migratory birds over two winters (2013-2014 and 2014-2015) in South Korea. Genetic and phylogenetic analysis demonstrated that the 2014-2015 HPAI H5N8 viruses are closely related to the 2013-2014 viruses, including virulence markers; however, all eight gene segments of 2014-2015 H5N8 viruses clustered in different phylogenetic branches from 2013-2014 H5N8 viruses, except the A/Em/Korea/W492/2015 virus. The H5N8 viruses of Europe and North America belong to sublineages of the 2013-2014 Korean H5N8 viruses but differ from the 2014-2015 Korean H5N8 viruses. Further hemagglutination inhibition (HI) assay results showed that there were 2-to-4 fold differences in HI titer between 2013-2014 and 2014-2015 H5N8 viruses. Taken together, our results suggested that the 2014-2015 Korean H5N8 viruses were genetically and serologically different from those of 2013-2014 winter season H5N8 viruses, including those from Europe and North America.


Emerging microbes & infections | 2018

Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016–2017 winter season

Hyeok-il Kwon; Eun-Ha Kim; Young-Il Kim; Su-Jin Park; Young-Jae Si; In-Won Lee; Hiep Dinh Nguyen; Kwang Min Yu; Min-Ah Yu; Ju Hwan Jung; Won-Suk Choi; Jin Jung Kwon; Su Jeong Ahn; Yun Hee Baek; Dam Van Lai; Ok-Jun Lee; Si-Wook Kim; Min-Suk Song; Sun-Woo Yoon; Chul-Joong Kim; Richard J. Webby; In-Pil Mo; Young Ki Choi

Highly pathogenic avian influenza (HPAI) A(H5N6) and A(H5N8) virus infections resulted in the culling of more than 37 million poultry in the Republic of Korea during the 2016/17 winter season. Here we characterize two representative viruses, A/Environment/Korea/W541/2016 [Em/W541(H5N6)] and A/Common Teal/Korea/W555/2017 [CT/W555(H5N8)], and evaluate their zoonotic potential in various animal models. Both Em/W541(H5N6) and CT /W555(H5N8) are novel reassortants derived from various gene pools of wild bird viruses present in migratory waterfowl arising from eastern China. Despite strong preferential binding to avian virus–type receptors, the viruses were able to grow in human respiratory tract tissues. Em/W541(H5N6) was found to be highly pathogenic in both chickens and ducks, while CT/W555(H5N8) caused lethal infections in chickens but did not induce remarkable clinical illness in ducks. In mice, both viruses appeared to be moderately pathogenic and displayed limited tissue tropism relative to HPAI H5N1 viruses. Em/W541(H5N6) replicated to moderate levels in the upper respiratory tract of ferrets and was detected in the lungs, brain, spleen, liver, and colon. Unexpectedly, two of three ferrets in direct contact with Em/W541(H5N6)-infected animals shed virus and seroconverted at 14 dpi. CT/W555(H5N8) was less pathogenic than the H5N6 virus in ferrets and no transmission was detected. Given the co-circulation of different, phenotypically distinct, subtypes of HPAI H5Nx viruses for the first time in South Korea, detailed virologic investigations are imperative given the capacity of these viruses to evolve and cause human infections.


Infection, Genetics and Evolution | 2016

Genetic diversity and pathogenic potential of low pathogenic H7 avian influenza viruses isolated from wild migratory birds in Korea.

Young-Il Kim; Si-Wook Kim; Young-Jae Si; Hyeok-il Kwon; Su-Jin Park; Eun-Ha Kim; Se Mi Kim; In-Won Lee; Min-Suk Song; Young Ki Choi

To detect the circulation of H7 avian influenza viruses, we characterized H7 viruses found in migratory birds and live poultry markets of South Korea from 2005 to 2014. Phylogenic analysis revealed that while all viruses clustered into the Eurasian-lineage of H7 avian viruses, at least 12 distinct genotypes were represented. Most H7 viruses contained at least one gene segment from the highly-pathogenic A/Sck/Hong Kong/YU100/02(H5N1)-like avian virus, and they could be separated into at least two antigenic groups. Although we did not detect genetically identical strains, HI assay demonstrated close cross-reactivity of some isolates with the H7N9 viruses from China. Animal studies revealed that most of the genotypes could replicate in the lungs of mice and chickens without prior adaptation and some, particularly H7N4 and H7N7 subtypes, induced mortality in mice. These results reinforce growing pandemic concerns regarding recent H7 viruses and emphasize the importance of continued surveillance of avian influenza viruses in the wild.


Journal of Virology | 2017

Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

Se Mi Kim; Young-Il Kim; Su-Jin Park; Eun-Ha Kim; Hyeok-il Kwon; Young-Jae Si; In-Won Lee; Min-Suk Song; Young Ki Choi

ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5 avian influenza viruses. IMPORTANCE Current influenza virus killed vaccines predominantly induce antihemagglutinin (anti-HA) antibodies that are commonly strain specific in that the antibodies have potent neutralizing activity against homologous strains but do not cross-react with HAs of other influenza virus subtypes. In contrast, the HA2 stalk domain is relatively well conserved among subtypes, and recently, broadly neutralizing antibodies against this domain have been isolated. Therefore, in light of the need for a vaccine strain that applies the DIVA strategy utilizing an HI assay and induces broad cross-protection against H5N1 and H9N2 viruses, we generated a novel chimeric H9/H5N1 virus that expresses the entire HA1 portion from the H9N2 virus and the HA2 region of the heterosubtypic H5N8 virus. The chimeric H9/H5N2 recombinant vaccine protected immunized hosts against lethal challenge with H9N2 and HPAI H5N1 viruses with significantly attenuated virus shedding in immunized hosts. Therefore, this chimeric vaccine is suitable as a DIVA vaccine against H5 avian influenza viruses.


Journal of Virology | 2017

Evaluation of the Immune Responses to and Cross-Protective Efficacy of Eurasian H7 Avian Influenza Viruses

Hyeok-il Kwon; Young-Il Kim; Su-Jin Park; Min-Suk Song; Eun-Ha Kim; Se Mi Kim; Young-Jae Si; In-Won Lee; Byung-Min Song; Youn-Jeong Lee; Seok Joong Yun; Wun-Jae Kim; Young Ki Choi

ABSTRACT Due to increasing concerns about human infection by various H7 influenza viruses, including recent H7N9 viruses, we evaluated the genetic relationships and cross-protective efficacies of three different Eurasian H7 avian influenza viruses. Phylogenic and molecular analyses revealed that recent Eurasian H7 viruses can be separated into two different lineages, with relatively high amino acid identities within groups (94.8 to 98.8%) and low amino acid identities between groups (90.3 to 92.6%). In vivo immunization with representatives of each group revealed that while group-specific cross-reactivity was induced, cross-reactive hemagglutination inhibition (HI) titers were approximately 4-fold lower against heterologous group viruses than against homologous group viruses. Moreover, the group I (RgW109/06) vaccine protected 100% of immunized mice from various group I viruses, while only 20 to 40% of immunized mice survived lethal challenge with heterologous group II viruses and exhibited high viral titers in the lung. Moreover, while the group II (RgW478/14) vaccine also protected mice from lethal challenge with group II viruses, it failed to elicit cross-protection against group I viruses. However, it is noteworthy that vaccination with RgAnhui1/13, a virus of a sublineage of group I, cross-protected immunized mice against lethal challenge with both group I and II viruses and significantly attenuated lung viral titers. Interestingly, immune sera from RgAnhui1/13-vaccinated mice showed a broad neutralizing spectrum rather than the group-specific pattern observed with the other viruses. These results suggest that the recent human-infective H7N9 strain may be a candidate broad cross-protective vaccine for Eurasian H7 viruses. IMPORTANCE Genetic and phylogenic analyses have demonstrated that the Eurasian H7 viruses can be separated into at least two different lineages, both of which contain human-infective fatal H7 viruses, including the recent novel H7N9 viruses isolated in China since 2013. Due to the increasing concerns regarding the global public health risk posed by H7 viruses, we evaluated the genetic relationships between Eurasian H7 avian influenza viruses and the cross-protective efficacies of three different H7 viruses: W109/06 (group I), W478/14 (group II), and Anhui1/13 (a sublineage of group I). While each vaccine induced group-specific antibody responses and cross-protective efficacy, only Anhui1/13 was able to cross-protect immunized hosts against lethal challenge across groups. In fact, the Anhui1/13 virus induced not only cross-protection but also broad serum neutralizing antibody responses against both groups of viruses. This suggests that Anhui1/13-like H7N9 viruses may be viable vaccine candidates for broad protection against Eurasian H7 viruses.


Eurosurveillance | 2018

Pathogenicity and genetic characterisation of a novel reassortant, highly pathogenic avian influenza (HPAI) H5N6 virus isolated in Korea, 2017

Young-Il Kim; Young-Jae Si; Hyeok-il Kwon; Eun-Ha Kim; Su-Jin Park; Norbert John Robles; Hiep Dinh Nguyen; Min-Ah Yu; Kwang-Min Yu; Youn-Jeong Lee; Myoung-Heon Lee; Young Ki Choi

We investigated influenza A(H5N6) viruses from migratory birds in Chungnam and Gyeonggi Provinces, South Korea following a reported die-off of poultry in nearby provinces in November 2017. Genetic analysis and virulence studies in chickens and ducks identified our isolate from December 2017 as a novel highly pathogenic avian influenza virus. It resulted from reassortment between the highly virulent H5N8 strain from Korea with the N6 gene from a low-pathogenic H3N6 virus from the Netherlands.

Collaboration


Dive into the Young-Jae Si's collaboration.

Top Co-Authors

Avatar

Eun-Ha Kim

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyeok-il Kwon

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Young Ki Choi

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

In-Won Lee

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Min-Suk Song

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Se Mi Kim

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Hiep Dinh Nguyen

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Chul-Joong Kim

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge