Young-Joon Seol
Pohang University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Young-Joon Seol.
European Journal of Cardio-Thoracic Surgery | 2014
Young-Joon Seol; Hyun-Wook Kang; Sang Jin Lee; Anthony Atala; James J. Yoo
Bioprinting technology has emerged as a powerful tool for building tissue and organ structures in the field of tissue engineering. This technology allows precise placement of cells, biomaterials and biomolecules in spatially predefined locations within confined three-dimensional (3D) structures. Various bioprinting technologies have been developed and utilized for applications in life sciences, ranging from studying cellular mechanisms to constructing tissues and organs for implantation, including heart valve, myocardial tissue, trachea and blood vessels. In this article, we introduce the general principles and limitations of the most widely used bioprinting technologies, including jetting- and extrusion-based systems. Application-based research focused on tissue regeneration is presented, as well as the current challenges that hamper clinical utility of bioprinting technology.
Soft Matter | 2012
Young-Joon Seol; Tae-Yun Kang; Dong-Woo Cho
An important component in tissue engineering is the three-dimensional (3D) scaffold, which guides cells to form target tissue, maintains tissue volume, and provides sufficient structural support during tissue regeneration. However, until recently, conventional scaffold fabrication methods have not satisfied the requirements for tissue regeneration. The development of additive fabrication technologies, known as solid freeform fabrication (SFF), has made it possible to fabricate scaffolds with very fine structures and complex geometries using computer-aided design (CAD) data acquired from medical images of patients. Due to the advantages of SFF technology, it is rapidly becoming the technique of choice for scaffold fabrication. Moreover, recent research has demonstrated that a variety of biomaterials are suitable for use in various SFF systems. This paper reviews the application, advancement, and potential of SFF technologies in the fabrication of scaffolds for tissue regeneration.
Biotechnology and Bioengineering | 2013
Young-Joon Seol; Dong Yong Park; Ju Young Park; Sung Won Kim; Seong Jin Park; Dong-Woo Cho
Fabrication of three‐dimensional (3D) scaffolds with appropriate mechanical properties and desired architecture for promoting cell growth and new tissue formation is one of the most important efforts in tissue engineering field. Scaffolds fabricated from bioactive ceramic materials such as hydroxyapatite and tricalcium phosphate show promise because of their biological ability to support bone tissue regeneration. However, the use of ceramics as scaffold materials is limited because of their inherent brittleness and difficult processability. The aim of this study was to create robust ceramic scaffolds, which have a desired architecture. Such scaffolds were successfully fabricated by projection‐based microstereolithography, and dilatometric analysis was conducted to study the sintering behavior of the ceramic materials. The mechanical properties of the scaffolds were improved by infiltrating them with a polycaprolactone solution. The toughness and compressive strength of these ceramic/polymer scaffolds were about twice those of ceramic scaffolds. Furthermore, the osteogenic gene expression on ceramic/polymer scaffolds was better than that on ceramic scaffolds. Through this study, we overcame the limitations of previous research on fabricating ceramic scaffolds and these new robust ceramic scaffolds may provide a much improved 3D substrate for bone tissue regeneration. Biotechnol. Bioeng. 2013; 110: 1444–1455.
Journal of The Mechanical Behavior of Biomedical Materials | 2014
Jinah Jang; Young-Joon Seol; Hyeon Ji Kim; Joydip Kundu; Sung Won Kim; Dong-Woo Cho
An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration.
Biofabrication | 2012
Hyun-Wook Kang; Jeong Hun Park; Tae-Yun Kang; Young-Joon Seol; Dong-Woo Cho
Scaffolds play an important role in the regeneration of artificial tissues or organs. A scaffold is a porous structure with a micro-scale inner architecture in the range of several to several hundreds of micrometers. Therefore, computer-aided construction of scaffolds should provide sophisticated functionality for porous structure design and a tool path generation strategy that can achieve micro-scale architecture. In this study, a new unit cell-based computer-aided manufacturing (CAM) system was developed for the automated design and fabrication of a porous structure with micro-scale inner architecture that can be applied to composite tissue regeneration. The CAM system was developed by first defining a data structure for the computing process of a unit cell representing a single pore structure. Next, an algorithm and software were developed and applied to construct porous structures with a single or multiple pore design using solid freeform fabrication technology and a 3D tooth/spine computer-aided design model. We showed that this system is quite feasible for the design and fabrication of a scaffold for tissue engineering.
Otolaryngology-Head and Neck Surgery | 2012
Se Hwan Hwang; Su Young Kim; Sun Hwa Park; Mi Young Choi; Hyun Wook Kang; Young-Joon Seol; Jeong Hun Park; Dong-Woo Cho; Oak Kee Hong; Jong Gu Rha; Sung Won Kim
Objective Mesenchymal stromal cells (MSCs) are multipotent progenitor cells in adult tissues. Current challenges for the clinical application of MSCs include donor site morbidity, which underscores the need to identify alternative sources of MSCs. This study aimed to explore potential new sources of multipotent MSCs for use in tissue regeneration and the functional restoration of organs. Study Design Mixed methods research. Setting Tertiary care center. Subjects and Methods The authors isolated MSCs from human inferior turbinate tissues discarded during turbinate surgery of 10 patients for nasal obstruction. The expression of surface markers for MSCs was assessed by fluorescence-activated cell sorting. The differentiation potential of human turbinate mesenchymal stromal cells (hTMSCs) was analyzed by immunohistochemistry, reverse transcriptase–polymerase chain reaction, and Western blot analysis. Results Surface epitope analysis revealed that hTMSCs were negative for CD14, CD19, CD34, and HLA-DR and positive for CD29, CD73, and CD90, representing a characteristic phenotype of MSCs. Extracellular matrices with characteristics of cartilage, bone, and adipose tissue were produced by inducing the chondrogenic, osteogenic, and adipogenic differentiation of hTMSCs, respectively. The expression of neuron-specific markers in hTMSCs was confirmed immunocytochemically. Conclusion The hTMSCs represent a new source of multipotent MSCs that are potentially applicable to tissue engineering and regenerative medicine. The availability of differentiated adult cells will allow the development of an effective tissue regeneration method.
Journal of Micromechanics and Microengineering | 2009
Hyun-Wook Kang; Young-Joon Seol; Dong-Woo Cho
Scaffold fabrication using solid freeform fabrication (SFF) technology is a hot topic in tissue engineering. Here, we present a new indirect SFF technology based on microstereolithography (MSTL), which has the highest resolution of all SFF methods, to construct a three-dimensional (3D) porous scaffold by combining SFF with molding technology. To realize this indirect method, we investigated and modified a water-soluble photopolymer. We used MSTL technology to fabricate a high-resolution 3D porous mold composed of the modified polymer. The mold can be removed using an appropriate solvent. We tested two materials, polycaprolactone and calcium sulfate hemihydrate, using the molding process, and developed a lost-mold shape forming process by dissolving the mold. This procedure demonstrated that the proposed method can yield scaffold pore sizes as small as 60–70 µm. In addition, cytotoxicity test results indicated that the proposed process is feasible for producing 3D porous scaffolds.
Journal of Biomedical Materials Research Part A | 2015
Young-Joon Seol; Ju Young Park; Won-Ju Jeong; Tae-Ho Kim; Shin-Yoon Kim; Dong-Woo Cho
The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site.
Journal of Tissue Engineering and Regenerative Medicine | 2015
Kyung Shin Kang; Jung Min Hong; Young-Joon Seol; Jong-Won Rhie; Young Hun Jeong; Dong-Woo Cho
An electromagnetic field is an effective stimulation tool because it promotes bone defect healing, albeit in an unknown way. Although electromagnetic fields are used for treatment after surgery, many patients prefer cell‐based tissue regeneration procedures that do not require daily treatments. This study addressed the effects of an electromagnetic field on adipose‐derived stem cells (ASCs) to investigate the feasibility of pretreatment to accelerate bone regeneration. After identifying a uniform electromagnetic field inside a solenoid coil, we observed that a 45 Hz electromagnetic field induced osteogenic marker expression via bone morphogenetic protein, transforming growth factor β, and Wnt signalling pathways based on microarray analyses. This electromagnetic field increased osteogenic gene expression, alkaline phosphate activity and nodule formation in vitro within 2 weeks, indicating that this pretreatment may provide osteogenic potential to ASCs on three‐dimensional (3D) ceramic scaffolds. This pretreatment effect of an electromagnetic field resulted in significantly better bone regeneration in a mouse calvarial defect model over 4 weeks compared to that in the untreated group. This short‐term evaluation showed that the electromagnetic field pretreatment may be a future therapeutic option for bone defect treatment. Copyright
Transactions of The Korean Society of Mechanical Engineers B | 2011
Young-Joon Seol; Juyoung Park; Dong-Woo Cho
Calcium phosphates are very interesting materials for use as scaffolds for bone tissue engineering. These materials include hydroxyapatite (HA) and tricalcium phosphate (TCP), which are inorganic components of human bone tissue and are both biocompatible and osteoconductive. Although these materials have excellent properties for use as bone scaffolds, many researchers have used these materials as additives to synthetic polymer scaffolds for bone tissue regeneration, because they are difficult to manufacture three-dimensional (3D) scaffolds. In this study, we fabricated 3D calcium phosphate scaffolds with the desired inner and outer architectures using solid freeform fabrication technology. To fabricate the scaffold, the sintering behavior was evaluated for various sintering temperatures and slurry concentrations. After the fabrication of the calcium phosphate scaffolds, in-vitro cell proliferation and osteogenic differentiation tests were carried out.