Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young-Joon Surh is active.

Publication


Featured researches published by Young-Joon Surh.


Nature Reviews Cancer | 2003

Cancer chemoprevention with dietary phytochemicals

Young-Joon Surh

Chemoprevention refers to the use of agents to inhibit, reverse or retard tumorigenesis. Numerous phytochemicals derived from edible plants have been reported to interfere with a specific stage of the carcinogenic process. Many mechanisms have been shown to account for the anticarcinogenic actions of dietary constituents, but attention has recently been focused on intracellular-signalling cascades as common molecular targets for various chemopreventive phytochemicals.


Mutation Research | 2001

Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation.

Young-Joon Surh; Kyung-Soo Chun; Hyun-Ho Cha; Seong Su Han; Young-Sam Keum; Kwang Kyun Park; Sang Sup Lee

A wide array of phenolic substances, particularly those present in edible and medicinal plants, have been reported to possess substantial anticarcinogenic and antimutagenic activities. The majority of naturally occurring phenolics retain antioxidative and anti-inflammatory properties which appear to contribute to their chemopreventive or chemoprotective activity. Cyclooxygenase-2 (COX-2) inducible and nitric oxide synthase (iNOS) are important enzymes that mediate inflammatory processes. Improper up-regulation of COX-2 and/or iNOS has been associated with pathophysiology of certain types of human cancers as well as inflammatory disorders. Since inflammation is closely linked to tumor promotion, substances with potent anti-inflammatory activities are anticipated to exert chemopreventive effects on carcinogenesis, particularly in the promotion stage. Examples are curcumin, a yellow pigment of turmeric (Curcuma longa L., Zingiberaceae), the green tea polyphenol epigallocatechin gallate (EGCG), and resveratrol from grapes (Vitis vinifera, Vitaceae) that strongly suppress tumor promotion. Recent studies have demonstrated that eukaryotic transcription factor nuclear factor-kappa B (NF-kappa B) is involved in regulation of COX-2 and iNOS expression. Several chemopreventive phytochemicals have been shown to inhibit COX-2 and iNOS expression by blocking improper NF-kappa B activation. Multiple lines of compelling evidence indicate that extracellular-regulated protein kinase and p38 mitogen-activated protein kinase are key elements of the intracellular signaling cascades responsible for NF-kappa B activation in response to a wide array of external stimuli. Curcumin, EGCG and resveratrol have been shown to suppress activation of NF-kappa B. One of the plausible mechanisms underlying inhibition of NF-kappa B activation by aforementioned phytochemicals involves repression of degradation of the inhibitory unit I kappa B alpha, which hampers subsequent nuclear translocation of the functionally active subunit of NF-kappa B.


Mutation Research-reviews in Mutation Research | 2008

Inflammation: Gearing the journey to cancer

Joydeb Kumar Kundu; Young-Joon Surh

Chronic inflammation plays a multifaceted role in carcinogenesis. Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. The possible mechanisms by which inflammation can contribute to carcinogenesis include induction of genomic instability, alterations in epigenetic events and subsequent inappropriate gene expression, enhanced proliferation of initiated cells, resistance to apoptosis, aggressive tumor neovascularization, invasion through tumor-associated basement membrane and metastasis, etc. Inflammation-induced reactive oxygen and nitrogen species cause damage to important cellular components (e.g., DNA, proteins and lipids), which can directly or indirectly contribute to malignant cell transformation. Overexpression, elevated secretion, or abnormal activation of proinflammatory mediators, such as cytokines, chemokines, cyclooxygenase-2, prostaglandins, inducible nitric oxide synthase, and nitric oxide, and a distinct network of intracellular signaling molecules including upstream kinases and transcription factors facilitate tumor promotion and progression. While inflammation promotes development of cancer, components of the tumor microenvironment, such as tumor cells, stromal cells in surrounding tissue and infiltrated inflammatory/immune cells generate an intratumoral inflammatory state by aberrant expression or activation of some proinflammatory molecules. Many of proinflammatory mediators, especially cytokines, chemokines and prostaglandins, turn on the angiogenic switches mainly controlled by vascular endothelial growth factor, thereby inducing inflammatory angiogenesis and tumor cell-stroma communication. This will end up with tumor angiogenesis, metastasis and invasion. Moreover, cellular microRNAs are emerging as a potential link between inflammation and cancer. The present article highlights the role of various proinflammatory mediators in carcinogenesis and their promise as potential targets for chemoprevention of inflammation-associated carcinogenesis.


Food and Chemical Toxicology | 2002

Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review.

Young-Joon Surh

A wide variety of phenolic substances derived from spice possess potent antimutagenic and anticarcinogenic activities. Examples are curcumin, a yellow colouring agent, contained in turmeric (Curcuma longa L., Zingiberaceae), [6]-gingerol, a pungent ingredient present in ginger (Zingiber officinale Roscoe, Zingiberaceae) and capsaicin, a principal pungent principle of hot chili pepper (Capsicum annuum L, Solanaceae). The chemopreventive effects exerted by these phytochemicals are often associated with their antioxidative and anti-inflammatory activities. Cyclo-oxygenase-2 (COX-2) has been recognized as a molecular target of many chemopreventive as well as anti-inflammatory agents. Recent studies have shown that COX-2 is regulated by the eukaryotic transcription factor NF-kappaB. This short review summarizes the molecular mechanisms underlying chemopreventive effects of the aforementioned spice ingredients in terms of their effects on intracellular signaling cascades, particularly those involving NF-kappaB and mitogen-activated protein kinases.


Cancer Letters | 1999

Resveratrol, an antioxidant present in red wine, induces apoptosis in human promyelocytic leukemia (HL-60) cells

Young-Joon Surh; Yeon-Jin Hurh; Jee-Young Kang; Eunyong Lee; Gu Kong; Su Jeen Lee

Resveratrol, a triphenolic stilbene present in grapes and other plants, has striking antioxidant and anti-inflammatory activities which have been considered to be responsible for the beneficial effects of red wine consumption on coronary heart disease. Recent studies reveal that resveratrol can inhibit each step of multistage carcinogenesis. However, the molecular mechanisms underlying anti-tumorigenic or chemopreventive activities of this phytochemical remain largely unknown. In the present work, we have found that resveratrol reduces viability and DNA synthesis capability of cultured human promyelocytic leukemia (HL-60) cells. The growth inhibitory and antiproliferative properties of resveratrol appear to be attributable to its induction of apoptotic cell death as determined by morphological and ultrastructural changes, internucleosomal DNA fragmentation, and increased proportion of the subdiploid cell population. Resveratrol treatment resulted in a gradual decrease in the expression of anti-apoptotic Bcl-2. These results, together with previous findings, suggest the cancer therapeutic as well as chemopreventive potential of resveratrol.


PLOS ONE | 2011

What Is New for an Old Molecule? Systematic Review and Recommendations on the Use of Resveratrol

Ole Vang; Nihal Ahmad; Clifton A. Baile; Joseph A. Baur; Karen Brown; Anna Csiszar; Dipak K. Das; Dominique Delmas; Carmem Gottfried; Hung Yun Lin; Qing Yong Ma; Partha Mukhopadhyay; Namasivayam Nalini; John M. Pezzuto; Tristan Richard; Yogeshwer Shukla; Young-Joon Surh; Thomas Szekeres; Tomasz Szkudelski; Thomas Walle; Joseph M. Wu

Background Resveratrol is a natural compound suggested to have beneficial health effects. However, people are consuming resveratrol for this reason without having the adequate scientific evidence for its effects in humans. Therefore, scientific valid recommendations concerning the human intake of resveratrol based on available published scientific data are necessary. Such recommendations were formulated after the Resveratrol 2010 conference, held in September 2010 in Helsingør, Denmark. Methodology Literature search in databases as PubMed and ISI Web of Science in combination with manual search was used to answer the following five questions: 1Can resveratrol be recommended in the prevention or treatment of human diseases?; 2Are there observed “side effects” caused by the intake of resveratrol in humans?; 3What is the relevant dose of resveratrol?; 4What valid data are available regarding an effect in various species of experimental animals?; 5Which relevant (overall) mechanisms of action of resveratrol have been documented? Conclusions/Significance The overall conclusion is that the published evidence is not sufficiently strong to justify a recommendation for the administration of resveratrol to humans, beyond the dose which can be obtained from dietary sources. On the other hand, animal data are promising in prevention of various cancer types, coronary heart diseases and diabetes which strongly indicate the need for human clinical trials. Finally, we suggest directions for future research in resveratrol regarding its mechanism of action and its safety and toxicology in human subjects.


Free Radical Biology and Medicine | 2003

Protective effect of resveratrol on β-amyloid-induced oxidative PC12 cell death ☆

Jung-Hee Jang; Young-Joon Surh

Abstract Beta-amyloid peptide is considered to be responsible for the formation of senile plaques that accumulate in the brains of patients with Alzheimer’s disease. There has been compelling evidence supporting the idea that β-amyloid-induced cytotoxicity is mediated through the generation of reactive oxygen intermediates (ROIs). Considerable attention has been focused on identifying phytochemicals that are able to scavenge excess ROIs, thereby protecting against oxidative stress and cell death. Resveratrol (3,5,4′-trihydroxy-trans-stilbene), a phytoalexin found in the skin of grapes, has strong antioxidative properties that have been associated with the protective effects of red wine consumption against coronary heart disease (“the French paradox”). In this study, we have investigated the effects of resveratrol on β-amyloid-induced oxidative cell death in cultured rat pheochromocytoma (PC12) cells. PC12 cells treated with β-amyloid exhibited increased accumulation of intracellular ROI and underwent apoptotic death as determined by characteristic morphological alterations and positive in situ terminal end-labeling (TUNEL staining). Beta-amyloid treatment also led to the decreased mitochondrial membrane potential, the cleavage of poly(ADP-ribose)polymerase, an increase in the Bax/Bcl-XL ratio, and activation of c-Jun N-terminal kinase. Resveratrol attenuated β-amyloid-induced cytotoxicity, apoptotic features, and intracellular ROI accumulation. Beta-amyloid transiently induced activation of NF-κB in PC12 cells, which was suppressed by resveratrol pretreatment.


Seminars in Oncology | 2010

Cancer Prevention With Natural Compounds

Norleena P. Gullett; A.R.M. Ruhul Amin; Soley Bayraktar; John M. Pezzuto; Dong M. Shin; Fadlo R. Khuri; Bharat B. Aggarwal; Young-Joon Surh; Omer Kucuk

Botanical and nutritional compounds have been used for the treatment of cancer throughout history. These compounds also may be useful in the prevention of cancer. Population studies suggest that a reduced risk of cancer is associated with high consumption of vegetables and fruits. Thus, the cancer chemopreventive potential of naturally occurring phytochemicals is of great interest. There are numerous reports of cancer chemopreventive activity of dietary botanicals, including cruciferous vegetables such as cabbage and broccoli, Allium vegetables such as garlic and onion, green tea, Citrus fruits, soybeans, tomatoes, berries, and ginger, as well as medicinal plants. Several lead compounds, such as genistein (from soybeans), lycopene (from tomatoes), brassinin (from cruciferous vegetables), sulforaphane (from asparagus), indole-3-carbinol (from broccoli), and resveratrol (from grapes and peanuts) are in preclinical or clinical trials for cancer chemoprevention. Phytochemicals have great potential in cancer prevention because of their safety, low cost, and oral bioavailability. In this review, we discuss potential natural cancer preventive compounds and their mechanisms of action.


Oncogene | 2005

[6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappaB in phorbol ester-stimulated mouse skin.

Sue Ok Kim; Joydeb Kumar Kundu; Young Kee Shin; Jin-Hong Park; Myung-Haing Cho; Tae-Yoon Kim; Young-Joon Surh

[6]-Gingerol, a pungent ingredient of ginger (Zingiber officinale Roscoe, Zingiberaceae), has a wide array of pharmacologic effects. The present study was aimed at unraveling the molecular mechanisms underlying previously reported antitumor promoting effects of [6]-gingerol in mouse skin in vivo. One of the well-recognized molecular targets for chemoprevention is cyclooxygenase-2 (COX-2) that is abnormally upregulated in many premalignant and malignant tissues and cells. In our present study, topical application of [6]-gingerol inhibited COX-2 expression in mouse skin stimulated with a prototype tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Since the transcription factor nuclear factor-kappaB (NF-κB) is known to regulate COX-2 induction, we attempted to determine the effect of [6]-gingerol on TPA-induced activation of NF-κB. Pretreatment with [6]-gingerol resulted in a decrease in both TPA-induced DNA binding and transcriptional activities of NF-κB through suppression of IκBα degradation and p65 nuclear translocation. Phosphorylation of both IκBα and p65 was substantially blocked by [6]-gingerol. In addition, [6]-gingerol inhibited TPA-stimulated interaction of phospho-p65-(Ser-536) with cAMP response element binding protein-binding protein, a transcriptional coactivator of NF-κB. Moreover, [6]-gingerol prevented TPA-induced phosphorylation and catalytic activity of p38 mitogen-activated protein (MAP) kinase that regulates COX-2 expression in mouse skin. The p38 MAP kinase inhibitor SB203580 attenuated NF-κB activation and subsequent COX-2 induction in TPA-treated mouse skin. Taken together, our data suggest that [6]-gingerol inhibits TPA-induced COX-2 expression in mouse skin in vivo by blocking the p38 MAP kinase-NF-κB signaling pathway.


Cancer Letters | 1998

Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice

Kwang Kyun Park; Kyung-Soo Chun; Jong-Min Lee; Sang Sup Lee; Young-Joon Surh

A wide array of phytochemicals have been shown to possess potential cancer chemopreventive properties. Ginger contains pungent phenolic substances with pronounced antioxidative and antiinflammatory activities. In the present study, we have determined the antitumor promotional activity of [6]-gingerol, a major pungent principle of ginger, using a two-stage mouse skin carcinogenesis model. Topical application of [6]-gingerol onto shaven backs of female ICR mice prior to each topical dose of 12-O-tetradecanoylphorbol-13-acetate (TPA) significantly inhibited 7,12-dimethylbenz[a]anthracene-induced skin papillomagenesis. The compound also suppressed TPA-induced epidermal ornithine decarboxylase activity and inflammation.

Collaboration


Dive into the Young-Joon Surh's collaboration.

Top Co-Authors

Avatar

Hye-Kyung Na

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Do-Hee Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jung-Hee Jang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hye-Kyung Na

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ha-Na Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeong-Sang Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge