Young Jun Tak
Yonsei University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Young Jun Tak.
Scientific Reports | 2016
Young Jun Tak; Byung Du Ahn; Sung Pyo Park; Si Joon Kim; Ae Ran Song; Kwun-Bum Chung; Hyun Jae Kim
Indium–gallium–zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M–O) bonds through the decomposition-rearrangement of M–O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm2/Vs, 3.96 × 107 to 1.03 × 108, and 11.2 to 7.2 V, respectively.
ACS Applied Materials & Interfaces | 2014
Young Jun Tak; Doo Hyun Yoon; Seokhyun Yoon; Uy Hyun Choi; Mardhiah Muhamad Sabri; Byung Du Ahn; Hyun Jae Kim
We developed a method to improve the electrical performance and stability of passivated amorphous In-Ga-Zn-O thin-film transistors by simultaneous ultraviolet and thermal (SUT) treatment. SUT treatment was carried out on fully fabricated thin-film transistors, including deposited source/drain and passivation layers. Ultraviolet (UV) irradiation disassociated weak and diatomic chemical bonds and generated defects, and simultaneous thermal annealing rearranged the defects. The SUT treatment promoted densification and condensation of the channel layer by decreasing the concentration of oxygen-vacancy-related defects and increasing the concentration of metal-oxide bonds. The SUT-treated devices exhibited improved electrical properties compared to nontreated devices: field-effect mobility increased from 5.46 to 13.36 V·s, sub-threshold swing decreased from 0.49 to 0.32 V/decade, and threshold voltage shift (for positive bias temperature stress) was reduced from 5.1 to 1.9 V.
Scientific Reports | 2016
Won Gi Kim; Young Jun Tak; Byung Du Ahn; Tae Soo Jung; K. B. Chung; Hyun Jae Kim
We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm2/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.
ACS Applied Materials & Interfaces | 2014
Seokhyun Yoon; Young Jun Tak; Doo Hyun Yoon; Uy Hyun Choi; Jin-Seong Park; Byung Du Ahn; Hyun Jae Kim
We studied the effects of high-pressure annealing (HPA) on InGaZnO (IGZO) thin-film transistors (TFTs). HPA was proceeded after TFT fabrication as a post process to improve electrical performance and stability. We used N2 as the pressurized gas. The applied pressures were 1 and 3 MPa at 200 °C. For N2 HPA under 3 MPa at 200 °C, field-effect mobility and the threshold voltage shift under a positive bias temperature stress were improved by 3.31 to 8.82 cm(2)/(V s) and 8.90 to 4.50 V, respectively. The improved electrical performance and stability were due to structural relaxation by HPA, which leads to increased carrier concentration and decreased oxygen vacancy.
Journal of information display | 2016
Young Jun Tak; Sung Pyo Park; Tae Soo Jung; Heesoo Lee; Won Gi Kim; Jeong Woo Park; Hyun Jae Kim
ABSTRACT Activation using the simultaneous UV-thermal (U-T) treatment of sputter-processed InGaZnO (IGZO) thin-film transistors (TFTs) is suggested. This treatment was performed to lower the activation temperature from 300°C (thermal activation alone) to 150°C as well as to improve the electrical characteristics and stability. Despite the low temperature, the U-T-treated devices showed superior electrical characteristics and stability compared to the devices that were only thermally activated (300°C): the mobility improved from 5.19 ± 1.8 to 16.20 ± 1.5 cm2/Vs, the on-off ratio increased from (5.58 ± 3.21) × 108 to (2.50 ± 2.23) × 109, and the threshold voltage shift (under positive bias stress for 1000 s) decreased from 7.1 to 2.2 V. These improvements are attributed to the following two contributions: (1) generation of reactive oxygen radical at a low temperature and (2) decomposition-rearrangement of the metal oxide (MO) bonds in the IGZO active layer. Contributions (1) and (2) effectively increased the MO bonds and decreased the defect-site-related oxygen vacancies.
Journal of Materials Chemistry C | 2015
Mardhiah Muhamad Sabri; Joohye Jung; Doo Hyun Yoon; Seokhyun Yoon; Young Jun Tak; Hyun Jae Kim
Solution-processed indium oxide TFTs were fabricated by hydroxyl radical-assisted (HRA) decomposition and oxidation. The results show that decomposition and oxidation of carbon is more substantial than metal hydroxides, leading to the elimination of organic residues, correlated to a low interface trap density (S.S. = 0.45 V dec−1, NT = 1.11 × 1012 cm−2) in the device. The resultant HRA indium oxide TFTs exhibit improved electrical characteristics such as the mobility, the on/off current ratio, and the subthreshold swing as well as bias stabilities under PBS and NBS conditions.
Scientific Reports | 2017
Seokhyun Yoon; Si Joon Kim; Young Jun Tak; Hyun Jae Kim
We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.
Journal of Materials Chemistry C | 2014
Doo Hyun Yoon; Young Jun Tak; Sung Pyo Park; Joohye Jung; Heesoo Lee; Hyun Jae Kim
In our previous work, the pristine sol-NiOx/Si based device did not exhibit reproducible resistive switching due to the presence of native interlayer oxide. To solve this problem, we investigated high-pressure hydrogen gas annealing at a stack of Al/sol-NiOx/Si to engineer the interface and bulk layer simultaneously. Different from the pure nitrogen high-pressure gas annealing which only affects the bulk properties of the system, we found that the high-pressure hydrogen gas can alter both the interfaces and bulk layers. As a result, the native interlayer oxide thickness at the NiOx/Si interface was reduced and the overall density of oxygen vacancies was increased due to the reduction of atomic hydrogen. Consequently, a good condition for less randomized generation of conducting pathways was secured which led to improved stability of high- and low-resistance states, as well as a larger ratio of high and low resistances regardless of a high free energy of formation at the bottom electrode (Si).
Scientific Reports | 2016
Heesoo Lee; Ki Soo Chang; Young Jun Tak; Tae Soo Jung; Jeong Woo Park; Won Gi Kim; Jusung Chung; Chan Bae Jeong; Hyun Jae Kim
A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.
Journal of Physics D | 2016
Uy Hyun Choi; Seokhyun Yoon; Doo Hyun Yoon; Young Jun Tak; Yeong Gyu Kim; Byung Du Ahn; Jin Seong Park; Heon Je Kim
In this study, we investigated a method of enhancing the electrical stability of GeInGaO thin-film transistors (TFTs) using a Li-doped Y2O3 (YO) passivation layer (PVL). Li reduced metal hydroxide groups in the PVL, and diffused into the channel layer and reduced the oxygen vacancy at the top surface of the channel layer, which is the origin of the defect state and electrical instability. In addition, the negative-bias temperature stress (NBTS) for 3600 s improved for Li-doped YO (LYO) PVL. The threshold voltage shift decreased from −10.3 V for the YO PVL to −4.8 V for the LYO PVL, a 54% improvement.