Young K. Truong
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Young K. Truong.
Neuroscience | 2011
Mechelle M. Lewis; Guangwei Du; Suman Sen; Atsushi Kawaguchi; Young K. Truong; Seonjoo Lee; Richard B. Mailman; Xuemei Huang
Parkinsons disease (PD) presents clinically with varying degrees of resting tremor, rigidity, and bradykinesia. For decades, striatal-thalamo-cortical (STC) dysfunction has been implied in bradykinesia and rigidity, but does not explain resting tremor in PD. To understand the roles of cerebello-thalamo-cortical (CTC) and STC circuits in the pathophysiology of the heterogeneous clinical presentation of PD, we collected functional magnetic resonance imaging (fMRI) data from 17 right-handed PD patients [nine tremor predominant (PDT) and eight akinetic-rigidity predominant (PDAR)] and 14 right-handed controls while they performed internally-guided (IG) sequential finger tapping tasks. The percentage of voxels activated in regions constituting the STC and CTC [divided as cerebellar hemisphere-thalamo-cortical (CHTC) and vermis-thalamo-cortical (CVTC)] circuits was calculated. Multivariate analysis of variance compared the activation patterns of these circuits between study groups. Compared to controls, both PDAR and PDT subjects displayed an overall increase in the percentage of voxels activated in both STC and CTC circuits. These increases reached statistical significance in contralateral STC and CTC circuits for PDT subjects, and in contralateral CTC pathways for PDAR subjects. Comparison of PDAR and PDT subjects revealed significant differences in ipsilateral STC (P=0.005) and CTC (P=0.043 for CHTC and P=0.003 for CVTC) circuits. These data support the differential involvement of STC and CTC circuits in PD subtypes, and help explain the heterogeneous presentation of PD symptoms. These findings underscore the importance of integrating CTC circuits in understanding PD and other disorders of the basal ganglia.
Neuroscience | 2010
Suman Sen; Atsushi Kawaguchi; Young K. Truong; Mechelle M. Lewis; Xuemei Huang
Both the basal ganglia and cerebellum are known to influence cortical motor and motor-associated areas via the thalamus. Whereas striato-thalamo-cortical (STC) motor circuit dysfunction has been implicated clearly in Parkinsons disease (PD), the role of the cerebello-thalamo-cortical (CTC) motor circuit has not been well defined. Functional magnetic resonance imaging (fMRI) is a convenient tool for studying the role of the CTC in vivo in PD patients, but large inter-individual differences in fMRI activation patterns require very large numbers of subjects in order to interpret data from cross-sectional, case control studies. To understand the role of the CTC during PD progression, we obtained longitudinal fMRI 2 years apart from 5 PD (57+/-8 yr) and five Controls (57+/-9 yr) performing either externally- (EG) or internally-guided (IG) sequential finger movements. All PD subjects had unilateral motor symptoms at baseline, but developed bilateral symptoms at follow-up. Within-group analyses were performed by comparing fMRI activation patterns between baseline and follow-up scans. Between-group comparisons were made by contrasting fMRI activation patterns generated by the more-affected and less-affected hands of PD subjects with the mean of the dominant and non-dominant hands of Controls. Compared to baseline, Controls showed changes in CTC circuits, but PD subjects had increased recruitment of both cortical motor-associated and cerebellar areas. Compared to Controls, PD subjects demonstrated augmented recruitment of CTC circuits over time that was statistically significant when the IG task was performed by the hand that transitioned from non-symptomatic to symptomatic. This longitudinal fMRI study demonstrates increased recruitment of the CTC motor circuit concomitant with PD progression, suggesting a role of the CTC circuit in accommodation to, or pathophysiology of, PD.
Journal of Statistical Planning and Inference | 1991
Young K. Truong
Abstract To account for the flexibility and the serial correlation in fitting repeated measurement data, we propose a model in which the mean function is a smooth nonparametric function and the noise is a parametric time series error. Under appropriate regularity conditions, a sequence of local average estimators can be chosen to achieve the pointwise or the uniform optimal rate of convergence as defined by Stone in nonparametric regression function estimation. Moreover, if the time series error structure forms part of a stationary process with a finite number of parameters (e.g., finite order autoregressive processes), then these parameters can be estimated with the usual root- n rate of convergence.
Journal of the American Statistical Association | 2011
Seonjoo Lee; Haipeng Shen; Young K. Truong; Mechelle M. Lewis; Xuemei Huang
Independent component analysis (ICA) is an effective data-driven method for blind source separation. It has been successfully applied to separate source signals of interest from their mixtures. Most existing ICA procedures are carried out by relying solely on the estimation of the marginal density functions, either parametrically or nonparametrically. In many applications, correlation structures within each source also play an important role besides the marginal distributions. One important example is functional magnetic resonance imaging (fMRI) analysis where the brain-function-related signals are temporally correlated. In this article, we consider a novel approach to ICA that fully exploits the correlation structures within the source signals. Specifically, we propose to estimate the spectral density functions of the source signals instead of their marginal density functions. This is made possible by virtue of the intrinsic relationship between the (unobserved) sources and the (observed) mixed signals. Our methodology is described and implemented using spectral density functions from frequently used time series models such as autoregressive moving average (ARMA) processes. The time series parameters and the mixing matrix are estimated via maximizing the Whittle likelihood function. We illustrate the performance of the proposed method through extensive simulation studies and a real fMRI application. The numerical results indicate that our approach outperforms several popular methods including the most widely used fastICA algorithm. This article has supplementary material online.
Annals of the Institute of Statistical Mathematics | 2001
Young K. Truong; Prakash Patil
Wavelet methods are used to estimate density and (auto-) regression functions that are possibly discontinuous. For stationary time series that satisfy appropriate mixing conditions, we derive mean integrated squared errors (MISEs) of wavelet-based estimators. In contrast to the case for kernel methods, the MISEs of wavelet-based estimators are not affected by the presence of discontinuities in the curves. Applications of this approach to problems of identification of nonlinear time series models are discussed.
Journal of Immunology | 2017
Sun Ah Kang; Yuri Fedoriw; Ethan K. Brenneman; Young K. Truong; Kristine Kay Kikly; Barbara J. Vilen
Tissue-specific immune responses play an important role in the pathology of autoimmune diseases. In systemic lupus erythematosus, deposits of IgG-immune complexes and the activation of complement in the kidney have long been thought to promote inflammation and lupus nephritis. However, the events that localize cells in non-lymphoid tertiary organs and sustain tissue-specific immune responses remain undefined. In this manuscript, we show that BAFF promotes events leading to lupus nephritis. Using an inducible model of systemic lupus erythematosus, we found that passive transfer of antinucleosome IgG into AID−/−MRL/lpr mice elevated autoantibody levels and promoted lupus nephritis by inducing BAFF production in the kidneys, and the formation of renal tertiary lymphoid structures (TLSs). Reducing BAFF in vivo prevented the formation of TLSs and lupus nephritis; however, it did not reduce immune cell infiltrates, or the deposits of IgG and complement in the kidney. Mechanistically, lowering BAFF levels also diminished the number of T cells positioned inside the glomeruli and reduced inflammation. Thus, BAFF plays a previously unappreciated role in lupus nephritis by inducing renal TLSs and regulating the position of T cells within the glomeruli.
Pediatrics | 2016
Jennifer L. Moss; Paul L. Reiter; Young K. Truong; Barbara K. Rimer; Noel T. Brewer
BACKGROUND: Low human papillomavirus (HPV) vaccination coverage is an urgent public health problem requiring action. To identify policy remedies to suboptimal HPV vaccination, we assessed the relationship between states’ school entry requirements and adolescent vaccination. METHODS: We gathered data on states’ school entry requirements for adolescent vaccination (tetanus, diphtheria, and pertussis [Tdap] booster; meningococcal; and HPV) from 2007 to 2012 from Immunization Action Coalition. The National Immunization Survey–Teen provided medical record–verified vaccination data for 99 921 adolescents. We calculated coverage (among 13- to 17-year-olds) for individual vaccinations and concomitant vaccination. HPV vaccination outcomes were among female adolescents. Analyses used weighted longitudinal multivariable models. RESULTS: States with requirements for Tdap booster and meningococcal vaccination had 22 and 24 percentage point increases in coverage for these vaccines, respectively, compared with other states (both P < .05). States with HPV vaccination requirements had <1 percentage point increase in coverage for this vaccine (P < .05). Tdap booster and meningococcal vaccination requirements, respectively, were associated with 8 and 4 percentage point spillover increases for HPV vaccination coverage (both P < .05) and with increases for concomitant vaccination (all P < .05). CONCLUSIONS: Ensuring all states have meningococcal vaccination requirements could improve the nation’s HPV vaccination coverage, given that many states already require Tdap booster but not meningococcal vaccination for school entry. Vaccination programs and clinicians should capitalize on changes in adolescent vaccination, including concomitant vaccination, that may arise after states adopt vaccination requirements. Additional studies are needed on the effects of HPV vaccination requirements and opt-out provisions.
PLOS ONE | 2016
Matthew J. Billard; David J. Fitzhugh; Joel S. Parker; Jaime M. Brozowski; Marcus W. McGinnis; Roman G. Timoshchenko; D. Stephen Serafin; Ruth A. Lininger; Nancy Klauber-DeMore; G. Gary Sahagian; Young K. Truong; Maria F. Sassano; Jonathan S. Serody; Teresa K. Tarrant
Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.
Journal of Immunology | 2016
SunAh Kang; Jennifer L. Rogers; Andrew J. Monteith; Chuancang Jiang; John L. Schmitz; Stephen H. Clarke; Teresa K. Tarrant; Young K. Truong; Marilyn Diaz; Yuri Fedoriw; Barbara J. Vilen
Apoptotic debris, autoantibody, and IgG–immune complexes (ICs) have long been implicated in the inflammation associated with systemic lupus erythematosus (SLE); however, it remains unclear whether they initiate immune-mediated events that promote disease. In this study, we show that PBMCs from SLE patients experiencing active disease, and hematopoietic cells from lupus-prone MRL/lpr and NZM2410 mice accumulate markedly elevated levels of surface-bound nuclear self-antigens. On dendritic cells (DCs) and macrophages (MFs), the self-antigens are part of IgG-ICs that promote FcγRI-mediated signal transduction. Accumulation of IgG-ICs is evident on ex vivo myeloid cells from MRL/lpr mice by 10 wk of age and steadily increases prior to lupus nephritis. IgG and FcγRI play a critical role in disease pathology. Passive transfer of pathogenic IgG into IgG-deficient MRL/lpr mice promotes the accumulation of IgG-ICs prior to significant B cell expansion, BAFF secretion, and lupus nephritis. In contrast, diminishing the burden IgG-ICs in MRL/lpr mice through deficiency in FcγRI markedly improves these lupus pathologies. Taken together, our findings reveal a previously unappreciated role for the cell surface accumulation of IgG-ICs in human and murine lupus.
Journal of Multivariate Analysis | 1992
Young K. Truong
Consider a stationary time series (Xt, Yt), t = 0, ±1, ... with Xt being d-valued and Yt real-valued. Let [psi](·) denote a monotone function and let [theta](·) denote the robust conditional location functional so that E[[psi](Y0 - [theta](X0))X0] = 0. Given a finite realization (X1, Y1), ..., (Xn, Yn), the problem of estimating [theta](·) is considered. Under appropriate regularity conditions, it is shown that a sequence of the robust conditional location functional estimators can be chosen to achieve the optimal rate of convergence n-1/(2 + d) both pointwise and in Lq (1