Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young-Ki Jo is active.

Publication


Featured researches published by Young-Ki Jo.


Plant Disease | 2009

Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi

Young-Ki Jo; Byung H. Kim; Geunhwa Jung

Silver in ionic or nanoparticle forms has a high antimicrobial activity and is therefore widely used for various sterilization purposes including materials of medical devices and water sanitization. There have been relatively few studies on the applicability of silver to control plant diseases. Various forms of silver ions and nanoparticles were tested in the current study to examine the antifungal activity on two plant-pathogenic fungi, Bipolaris sorokiniana and Magnaporthe grisea. In vitro petri dish assays indicated that silver ions and nanoparticles had a significant effect on the colony formation of these two pathogens. Effective concentrations of the silver compounds inhibiting colony formation by 50% (EC50) were higher for B. sorokiniana than for M. grisea. The inhibitory effect on colony formation significantly diminished after silver cations were neutralized with chloride ions. Growth chamber inoculation assays further confirmed that both ionic and nanoparticle silver significantly reduced these two fungal diseases on perennial ryegrass (Lolium perenne). Particularly, silver ions and nanoparticles effectively reduced disease severity with an application at 3 h before spore inoculation, but their efficacy significantly diminished when applied at 24 h after inoculation. The in vitro and in planta evaluations of silver indicated that both silver ions and nanoparticles influence colony formation of spores and disease progress of plant-pathogenic fungi. In planta efficacy of silver ions and nanoparticles is much greater with preventative application, which may promote the direct contact of silver with spores and germ tubes, and inhibit their viability.


Plant Disease | 2006

Fungicide Sensitivity of Sclerotinia homoeocarpa from Golf Courses in Ohio

Young-Ki Jo; Amy L. Niver; J. W. Rimelspach; Michael J. Boehm

Managing dollar spot, the most common and chronic disease on intensively cultivated turfgrass, relies on the judicious use of fungicides. The heavy use of fungicides has led to the development of isolates of Sclerotinia homoeocarpa insensitive to several classes of fungicides, including benzimidazoles, demethylation-inhibitors, and dicarboximides. In vitro fungicide sensitivity assays using single discriminatory concentrations of thiophanate-methyl, propiconazole, and iprodione were developed in this study for evaluating field efficacy of these fungicides and the prevalence of fungicide insensitivity within S. homoeocarpa isolated from golf courses throughout Ohio. Discriminatory concentrations for these fungicides were determined to be: thiophanate-methyl = 1,000 μg a.i. ml-1, propiconazole = 0.1 μg a.i. ml-1, and iprodione = 1.0 μg a.i. ml-1. Effective concentration that produces 50% inhibition (EC50) was estimated based on relative mycelial growth of S. homoeocarpa on potato dextrose agar (PDA) versus PDA amended with the discriminatory concentration of each fungicide. Field trials conducted at 3 locations in 2002 and 10 locations in 2003 revealed that the in vitro assays accurately predicted field efficacy for thiophanate-methyl. When used to screen 192 S. homoeocarpa isolates collected previously from 55 golf courses throughout Ohio, the in vitro assays revealed that 34 of the golf courses sampled had S. homoeocarpa resistant to thiophanate-methyl. S. homoeocarpa with reduced in vitro sensitivities was isolated from 18 and 1 golf courses for propiconazole and iprodione, respectively.


Phytopathology | 2008

Rapid Development of Fungicide Resistance by Sclerotinia homoeocarpa on Turfgrass

Young-Ki Jo; Seog Won Chang; Michael J. Boehm; Geunhwa Jung

Dollar spot, caused by Sclerotinia homoeocarpa, is the most prevalent and economically important turfgrass disease in North America. Increasing levels of fungicide resistance, coupled with tightening environmental scrutiny of existing fungicides, has left fewer options for managing dollar spot. More knowledge about S. homoeocarpa populations is needed to improve dollar spot management strategies, especially with respect to minimizing the development of fungicide resistance. Population diversity of S. homoeocarpa was examined using inter-simple sequence repeat markers and vegetative compatibility assays. Two subgroups were found in S. homoeocarpa field populations on both fairway and putting green turfgrass at a research field in Wisconsin. These subgroups were genetically different, vegetatively incompatible, and had different fungicide sensitivities. The frequency of the two genetic subgroups differed significantly between the fairway and putting green, but was uniform within the fairway or within the green. Population dynamics of S. homoeocarpa in response to two systemic fungicides (thiophanate-methyl and propiconazole) were assessed based on in vitro fungicide sensitivity. Dynamics of S. homoeocarpa populations depended on the presence of fungicide-resistant isolates in the initial populations before fungicide applications and changed rapidly after fungicide applications. Shifting of the population toward propiconazole resistance was gradual, whereas thiophanate-methyl resistance developed rapidly in the population. In conclusion, field populations of S. homoeocarpa containing genetically distinct, vegetatively incompatible groups were different on turfgrass that was managed differently, and they were changed rapidly after exposure to fungicides.


Plant Disease | 2009

Thiophanate-Methyl and Propiconazole Sensitivity in Sclerotinia homoeocarpa Populations from Golf Courses in Wisconsin and Massachusetts

Paul L. Koch; C. R. Grau; Young-Ki Jo; Geunhwa Jung

Management of dollar spot, caused by the fungus Sclerotinia homoeocarpa, is dependent upon repeated fungicide applications in intensively managed turfgrass such as golf course putting greens and fairways. Repeated fungicide applications could potentially select for fungicide-resistant isolates and result in a reduction of disease control. The objectives of this study were to determine the degree of S. homoeocarpa in vitro sensitivity to the fungicides thiophanate-methyl and propiconazole using isolates collected from golf course putting greens, fairways, and roughs; and to determine the relationships of golf course age and fungicide history to the frequency of fungicide-insensitive isolates within the population. More than 1,400 S. homoeocarpa isolates were collected from putting greens, fairways, and roughs at six Wisconsin golf courses and one Massachusetts golf course and subjected to in vitro fungicide sensitivity assays with single discriminatory concentrations of thiophanate-methyl and propiconazole. Five of seven pathogen populations from rough areas were not significantly different from one another in propiconazole sensitivity. These populations were collectively the most sensitive to both fungicides and therefore, served as baseline populations for comparison with fungicide-exposed populations from putting greens and fairways. Greater propiconazole insensitivity was observed in populations collected from fairways and putting greens that received more frequent applications of the fungicide than those isolated from the roughs. In nearly all the golf courses, the frequency of thiophanate-methyl insensitivity was higher among isolates of S. homoeocarpa collected from fairways than from roughs regardless of the age of the golf course or history of benzimidazole use. Thus, while the development of resistance to propiconazole can be predicted in part by the relative frequency of demethylation inhibitor fungicide applications, the occurrence of populations resistant to thiophanate-methyl appears to be unrelated to recent use of the benzimidazole class of fungicides.


PLOS ONE | 2013

Development of a real-time microchip PCR system for portable plant disease diagnosis.

Chiwan Koo; Martha Malapi-Wight; Hyun Soo Kim; Osman S. Cifci; Vanessa L. Vaughn-Diaz; Bo Ma; Sungman Kim; Haron Abdel-Raziq; Kevin Ong; Young-Ki Jo; Dennis C. Gross; Won-Bo Shim; Arum Han

Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.


Phytopathology | 2008

Reassessment of Vegetative Compatibility of Sclerotinia homoeocarpa Using Nitrate-Nonutilizing Mutants

Young-Ki Jo; Seog Won Chang; J. Rees; Geunhwa Jung

Nitrate-nonutilizing (nit) mutants were recovered for the first time from 21 isolates of Sclerotinia homoeocarpa collected in the United States. Mutants were selected from shredded mycelium of each isolate when cultured on water agar medium amended with 4% (wt/vol) potassium chlorate. The mutants could be classified into three phenotypes: nit1, nit3, and NitM, based on their growth on minimal medium (Czapek solution agar) supplemented with NaNO(2) or hypoxanthine. Complementary heterokaryons were observed in pairings between different phenotypes of nit mutants derived from compatible isolates, but not in self-fusions or pairings between incompatible isolates. The vigor of prototrophic growth varied with isolates and mutant phenotypes. Strong and continuous heterokaryons, as well as weak and spontaneous ones, formed depending on pairings of nit mutants. Stable heterokaryons between compatible isolates, but apoptotic reactions between incompatible isolates, were observed immediately after hyphal fusion under the epifluorescence microscope. The 21 isolates used in this study, which were previously assigned into 11 different vegetative compatibility groups (VCGs) based on the formation of a barrage zone at the contact site of paired isolates on complete medium (potato dextrose agar), were regrouped into five VCGs based on heterokaryon formation between nit mutants on minimal medium.


Mycologia | 2016

Curvularia malina sp. nov. incites a new disease of warm-season turfgrasses in the southeastern United States

Maria Tomaso-Peterson; Young-Ki Jo; Phillip L. Vines; Federico G. Hoffmann

A novel species of Curvularia was identified as a foliar pathogen of Cynodon dactylon (bermudagrass) and Zoysia matrella (zoysiagrass), two important warm-season turfgrasses in the southeastern United States. Field symptoms were conspicuous chocolate brown to black spots in turf of both species on golf course putting greens and fairways. Leaves of plants within these spots exhibited prominent, black eyespot lesions from which a darkly pigmented fungus was consistently isolated. The fungus produced gray- to black-olivaceous mycelium within 10 d on potato dextrose agar at 25 C but never produced conidia despite numerous attempts to induce them. Field symptoms were reproduced in inoculated plants of both grasses, and re-isolation of the pathogen from symptomatic tissues confirmed its pathogenicity in fulfillment of Koch’s postulates. A phylogenetic analysis was performed using sequence markers of internal nuclear ribosomal transcribed spacer region (ITS), glyceralde-hyde-3-phosphate dehydrogenase (GPD1) and translation elongation factor 1-α (TEF 1). The concatenated phylogenetic tree showed strong support for a new species within Curvularia that is distinctly divergent from other Curvularia spp. Therefore, the darkly pigmented pathogen of warm-season turfgrasses is described and illustrated as a new species, Curvularia malina.


Plant Pathology Journal | 2014

Evidence for Genetic Similarity of Vegetative Compatibility Groupings in Sclerotinia homoeocarpa

Seog Won Chang; Young-Ki Jo; Taehyun Chang; Geunhwa Jung

Vegetative compatibility groups (VCGs) are determined for many fungi to test for the ability of fungal isolates to undergo heterokaryon formation. In several fungal plant pathogens, isolates belonging to a VCG have been shown to share significantly higher genetic similarity than those of different VCGs. In this study we sought to examine the relationship between VCG and genetic similarity of an important cool season turfgrass pathogen, Sclerotinia homoeocarpa. Twenty-two S. homoeocarpa isolates from the Midwest and Eastern US, which were previously characterized in several studies, were all evaluated for VCG using an improved nit mutant assay. These isolates were also genotyped using 19 microsatellites developed from partial genome sequence of S. homoeocarpa. Additionally, partial sequences of mitochondrial genes cytochrome oxidase II and mitochondrial small subunit (mtSSU) rRNA, and the atp6-rns intergenic spacer, were generated for isolates from each nit mutant VCG to determine if mitochondrial haplotypes differed among VCGs. Of the 22 isolates screened, 15 were amenable to the nit mutant VCG assay and were grouped into six VCGs. The 19 microsatellites gave 57 alleles for this set. Unweighted pair group methods with arithmetic mean (UPGMA) tree of binary microsatellite data were used to produce a dendrogram of the isolate genotypes based on microsatellite alleles, which showed high genetic similarity of nit mutant VCGs. Analysis of molecular variance of microsatellite data demonstrates that the current nit mutant VCGs explain the microsatellite genotypic variation among isolates better than the previous nit mutant VCGs or the conventionally determined VCGs. Mitochondrial sequences were identical among all isolates, suggesting that this marker type may not be informative for US populations of S. homoeocarpa.


PLOS ONE | 2018

Microalgal cultivation for biofertilization in rice plants using a vertical semi-closed airlift photobioreactor

Michael Jochum; Luis P. Moncayo; Young-Ki Jo

Nitrogen (N) is one of the most important limiting factors in conventional rice (Oryza sativa) production, which heavily relies on synthetic fertilizers. In this study, we researched on the development and use of a vertical semi-closed airlift photobioreactor (PBR) for microalgal cultivation and subsequently determined the efficacy of microalgae-based fertilizers to rice plant growth. The PBR system was developed to produce two strains of N2-fixing cyanobacteria (Anabaena sp. UTEX 2576, Nostoc muscorum UTEX 2209S), and a polyculture of Chlorella vulgaris (UTEX 2714) and Scenedesmus dimorphus (UTEX 1237). When these biofertilizers were evaluated for rice under the greenhouse conditions, results showed that the rice plant heights treated with polyculture-based microalgal biomass were similar to or better than the urea treatment. The effects of the inoculation of the N2-fixing cyanobacterial inoculation on seedling growth was not statistically significant. In conclusion, the vertical semi-closed system PBR cultivation method developed in this study proved to be a simple and effective method for cultivating microalgae. Demonstration of the reliable production system for N2-fixing cyanobacteria and chlorophytes at a medium scale could potentially open the future application of microalgal biofertilizers in rice production.


Archive | 2009

Comparative Analysis of Disease Resistance Between Ryegrass and Cereal Crops

Geunhwa Jung; Young-Ki Jo; Reed Barker; William Pfender; Scott E. Warnke

Perennial ryegrass (Lolium perenne L.) is one of the important forage and turf grasses in temperate zones in the world. Gray leaf spot caused by the fungus Pyricularia oryzae has recently become a serious problem on perennial ryegrass for golf course fairways. The causal agent also causes rice blast disease on rice, as well as foliar diseases on wheat and barley. Crown and stem rust caused by Puccinia spp. are also important for forage- and turf-type perennial ryegrass and seed production. In addition, foliar diseases caused by Bipolaris species, are common and widespread on graminaceous plants. Despite a recent advancement of molecular markers for forage and turf grasses, effective utilization of genetic information available in cereal crops will significantly lead to better understanding of the genetic architecture of disease resistance in ryegrass. Quantitative trait loci (QTL) analysis based on a three-generation interspecific ryegrass population detected a total of 16 QTLs for resistance to the four pathogens. Those QTL were compared with 45 resistance loci for the same or related pathogens previously identified in cereal crops, based on comparative genome analysis using a ryegrass genetic map and a rice physical map. Some pathogen-specific QTLs identified in ryegrass were conserved at corresponding genome regions in cereals but coincidence of QTLs for disease resistance in ryegrass and cereals was not statistically significant at the genome-wide comparison. In conclusion, the conserved synteny of disease resistance loci will facilitate transferring genetic resources for disease resistance between ryegrass and cereals to accommodate breeding needs for developing multiple disease resistance cultivars in ryegrass.

Collaboration


Dive into the Young-Ki Jo's collaboration.

Top Co-Authors

Avatar

Geunhwa Jung

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Seog Won Chang

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul L. Koch

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Reed Barker

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Scott E. Warnke

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge