Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young Koung Lee is active.

Publication


Featured researches published by Young Koung Lee.


Nature Genetics | 2011

Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia

Christopher N. Hahn; Chan Eng Chong; Catherine L. Carmichael; Ella J. Wilkins; Peter J. Brautigan; Xiaochun Li; Milena Babic; Ming Lin; Amandine Carmagnac; Young Koung Lee; Chung H. Kok; Lucia Gagliardi; Kathryn Friend; Paul G. Ekert; Carolyn M. Butcher; Anna L. Brown; Ian D. Lewis; L. Bik To; Andrew E. Timms; Jan Storek; Sarah Moore; Meryl Altree; Robert Escher; Peter Bardy; Graeme Suthers; Richard J. D'Andrea; Marshall S. Horwitz; Hamish S. Scott

We report the discovery of GATA2 as a new myelodysplastic syndrome (MDS)-acute myeloid leukemia (AML) predisposition gene. We found the same, previously unidentified heterozygous c.1061C>T (p.Thr354Met) missense mutation in the GATA2 transcription factor gene segregating with the multigenerational transmission of MDS-AML in three families and a GATA2 c.1063_1065delACA (p.Thr355del) mutation at an adjacent codon in a fourth MDS family. The resulting alterations reside within the second zinc finger of GATA2, which mediates DNA-binding and protein-protein interactions. We show differential effects of the mutations on the transactivation of target genes, cellular differentiation, apoptosis and global gene expression. Identification of such predisposing genes to familial forms of MDS and AML is critical for more effective diagnosis and prognosis, counseling, selection of related bone marrow transplant donors and development of therapies.


Development | 2006

LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis.

Young Koung Lee; Gyung-Tae Kim; In-Jung Kim; Jeongmoo Park; Sang-Soo Kwak; Giltsu Choi; Won-Il Chung

Plants have diversified their leaf morphologies to adapt to diverse ecological niches. The molecular components responsible for regulating leaf morphology, however, have not been fully elucidated. By screening Arabidopsis activation-tagging lines, we identified a dominant mutant, which we designated longifolia1-1D (lng1-1D). lng1-1D plants were characterized by long petioles, narrow but extremely long leaf blades with serrated margins, elongated floral organs, and elongated siliques. The elongated leaves of the mutant were due to increased polar cell elongation rather than increased cell proliferation. Molecular characterization revealed that this phenotype was caused by overexpression of the novel gene LNG1, which was found to have a homolog, LNG2,in Arabidopsis. To further examine the role of the LNG genes, we characterized lng1 and lng2 loss-of-function mutant lines. In contrast to the elongated leaves of lng1-1D plants, the lng1 and lng2 mutants showed slightly decreased leaf length. Furthermore, the lng1-3 lng2-1 double mutant showed further decreased leaf length associated with less longitudinal polar cell elongation. The leaf widths in lng1-3 lng2-1 mutant plants were similar to those in wild type, implying that the role of LNG1 and LNG2 on polar cell elongation is similar to that of ROTUNDIFOLIA3 (ROT3). However, analysis of a lng1-3 lng2-1 rot3-1 triple mutant and of a lng1-1D rot3-1 double mutant indicated that LNG1 and LNG2 promote longitudinal cell elongation independently of ROT3. Taken together, these findings indicate that LNG1 and LNG2 are new components that regulate leaf morphology by positively promoting longitudinal polar cell elongation independently of ROT3 in Arabidopsis.


Journal of Clinical Investigation | 2015

GATA2 is required for lymphatic vessel valve development and maintenance

Jan Kazenwadel; Kelly L. Betterman; Chan-Eng Chong; Philippa H. Stokes; Young Koung Lee; Genevieve A. Secker; Yan Agalarov; Cansaran Saygili Demir; David Lawrence; Drew L. Sutton; Sébastien Tabruyn; Naoyuki Miura; Marjo Salminen; Tatiana V. Petrova; Jacqueline M. Matthews; Christopher N. Hahn; Hamish S. Scott; Natasha L. Harvey

Heterozygous germline mutations in the zinc finger transcription factor GATA2 have recently been shown to underlie a range of clinical phenotypes, including Emberger syndrome, a disorder characterized by lymphedema and predisposition to myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). Despite well-defined roles in hematopoiesis, the functions of GATA2 in the lymphatic vasculature and the mechanisms by which GATA2 mutations result in lymphedema have not been characterized. Here, we have provided a molecular explanation for lymphedema predisposition in a subset of patients with germline GATA2 mutations. Specifically, we demonstrated that Emberger-associated GATA2 missense mutations result in complete loss of GATA2 function, with respect to the capacity to regulate the transcription of genes that are important for lymphatic vessel valve development. We identified a putative enhancer element upstream of the key lymphatic transcriptional regulator PROX1 that is bound by GATA2, and the transcription factors FOXC2 and NFATC1. Emberger GATA2 missense mutants had a profoundly reduced capacity to bind this element. Conditional Gata2 deletion in mice revealed that GATA2 is required for both development and maintenance of lymphovenous and lymphatic vessel valves. Together, our data unveil essential roles for GATA2 in the lymphatic vasculature and explain why a select catalogue of human GATA2 mutations results in lymphedema.


Nature Genetics | 2016

Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits

Byoung Il Je; Jérémy Gruel; Young Koung Lee; Peter Bommert; Edgar Demesa Arevalo; Andrea L. Eveland; Qingyu Wu; Alexander Goldshmidt; Robert B. Meeley; Madelaine E. Bartlett; Mai Komatsu; Hajime Sakai; Henrik Jönsson; David Jackson

Shoot apical meristems are stem cell niches that balance proliferation with the incorporation of daughter cells into organ primordia. This balance is maintained by CLAVATA–WUSCHEL feedback signaling between the stem cells at the tip of the meristem and the underlying organizing center. Signals that provide feedback from organ primordia to control the stem cell niche in plants have also been hypothesized, but their identities are unknown. Here we report FASCIATED EAR3 (FEA3), a leucine-rich-repeat receptor that functions in stem cell control and responds to a CLAVATA3/ESR-related (CLE) peptide expressed in organ primordia. We modeled our results to propose a regulatory system that transmits signals from differentiating cells in organ primordia back to the stem cell niche and that appears to function broadly in the plant kingdom. Furthermore, we demonstrate an application of this new signaling feedback, by showing that weak alleles of fea3 enhance hybrid maize yield traits.


Food Chemistry | 2016

Sugar and acid content of Citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis.

Seung Yeob Song; Young Koung Lee; In-Jung Kim

A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy.


Current Plant Biology | 2016

Gramene Database: Navigating Plant Comparative Genomics Resources.

Parul Gupta; Sushma Naithani; Marcela K. Tello-Ruiz; Kapeel Chougule; Peter D’Eustachio; Antonio Fabregat; Yinping Jiao; Maria Keays; Young Koung Lee; Sunita Kumari; Joseph Mulvaney; Andrew Olson; Justin Preece; Joshua C. Stein; Sharon Wei; Joel Weiser; Laura Huerta; Robert Petryszak; Paul J. Kersey; Lincoln Stein; Doreen Ware; Pankaj Jaiswal

Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationships to enrich the annotation of genomic data and provides tools to perform powerful comparative analyses across a wide spectrum of plant species. It consists of an integrated portal for querying, visualizing and analyzing data for 44 plant reference genomes, genetic variation data sets for 12 species, expression data for 16 species, curated rice pathways and orthology-based pathway projections for 66 plant species including various crops. Here we briefly describe the functions and uses of the Gramene database.


Nucleic Acids Research | 2018

Gramene 2018: unifying comparative genomics and pathway resources for plant research

Marcela K. Tello-Ruiz; Sushma Naithani; Joshua C. Stein; Parul Gupta; Michael S. Campbell; Andrew Olson; Sharon Wei; Justin Preece; Matthew Geniza; Yinping Jiao; Young Koung Lee; Bo Wang; Joseph Mulvaney; Kapeel Chougule; Justin Elser; Noor Al-Bader; Sunita Kumari; James Thomason; Vivek Kumar; Daniel M. Bolser; Guy Naamati; Electra Tapanari; Nuno A. Fonseca; Laura Huerta; Haider Iqbal; Maria Keays; Alfonso Munoz-Pomer Fuentes; Amy Tang; Antonio Fabregat; Peter D’Eustachio

Abstract Gramene (http://www.gramene.org) is a knowledgebase for comparative functional analysis in major crops and model plant species. The current release, #54, includes over 1.7 million genes from 44 reference genomes, most of which were organized into 62,367 gene families through orthologous and paralogous gene classification, whole-genome alignments, and synteny. Additional gene annotations include ontology-based protein structure and function; genetic, epigenetic, and phenotypic diversity; and pathway associations. Gramenes Plant Reactome provides a knowledgebase of cellular-level plant pathway networks. Specifically, it uses curated rice reference pathways to derive pathway projections for an additional 66 species based on gene orthology, and facilitates display of gene expression, gene–gene interactions, and user-defined omics data in the context of these pathways. As a community portal, Gramene integrates best-of-class software and infrastructure components including the Ensembl genome browser, Reactome pathway browser, and Expression Atlas widgets, and undergoes periodic data and software upgrades. Via powerful, intuitive search interfaces, users can easily query across various portals and interactively analyze search results by clicking on diverse features such as genomic context, highly augmented gene trees, gene expression anatomograms, associated pathways, and external informatics resources. All data in Gramene are accessible through both visual and programmatic interfaces.


Human Mutation | 2016

Ectrodactyly and Lethal Pulmonary Acinar Dysplasia Associated with Homozygous FGFR2 Mutations Identified by Exome Sequencing

Christopher Barnett; Nathalie Nataren; Manuela Klingler-Hoffmann; Quenten Schwarz; Chan-Eng Chong; Young Koung Lee; Damien L. Bruno; Jill Lipsett; Andrew J. McPhee; Andreas W. Schreiber; Jinghua Feng; Christopher N. Hahn; Hamish S. Scott

Ectrodactyly/split hand‐foot malformation is genetically heterogeneous with more than 100 syndromic associations. Acinar dysplasia is a rare congenital lung lesion of unknown etiology, which is frequently lethal postnatally. To date, there have been no reports of combinations of these two phenotypes. Here, we present an infant from a consanguineous union with both ectrodactyly and autopsy confirmed acinar dysplasia. SNP array and whole‐exome sequencing analyses of the affected infant identified a novel homozygous Fibroblast Growth Factor Receptor 2 (FGFR2) missense mutation (p.R255Q) in the IgIII domain (D3). Expression studies of Fgfr2 in development show localization to the affected limbs and organs. Molecular modeling and genetic and functional assays support that this mutation is at least a partial loss‐of‐function mutation, and contributes to ectrodactyly and acinar dysplasia only in homozygosity, unlike previously reported heterozygous activating FGFR2 mutations that cause Crouzon, Apert, and Pfeiffer syndromes. This is the first report of mutations in a human disease with ectrodactyly with pulmonary acinar dysplasia and, as such, homozygous loss‐of‐function FGFR2 mutations represent a unique syndrome.


Plant Molecular Biology | 2018

Functionally redundant LNG3 and LNG4 genes regulate turgor-driven polar cell elongation through activation of XTH17 and XTH24

Young Koung Lee; Ji Ye Rhee; Seong Hee Lee; Gap Chae Chung; Soon Ju Park; Shoji Segami; Masayohi Maeshima; Giltsu Choi

Key messageIn this work, we genetically characterized the function of Arabidopsis thaliana, LONGIFOLIA (LNG1), LNG2, LNG3, LNG4, their contribution to regulate vegetative architecture in plant. We used molecular and biophysical approaches to elucidate a gene function that regulates vegetative architecture, as revealed by the leaf phenotype and later effects on flowering patterns in Arabidopsis loss-of-function mutants. As a result, LNG genes play an important role in polar cell elongation by turgor pressure controlling the activation of XTH17 and XTH24.AbstractPlant vegetative architecture is related to important traits that later influence the floral architecture involved in seed production. Leaf morphology is the primary key trait to compose plant vegetative architecture. However, molecular mechanism on leaf shape determination is not fully understood even in the model plant A. thaliana. We previously showed that LONGIFOLIA (LNG1) and LONGIFOLIA2 (LNG2) genes regulate leaf morphology by promoting longitudinal cell elongation in Arabidopsis. In this study, we further characterized two homologs of LNG1, LNG3, and LNG4, using genetic, biophysical, and molecular approaches. Single loss-of-function mutants, lng3 and lng4, do not show any phenotypic difference, but mutants of lng quadruple (lngq), and lng1/2/3 and lng1/2/4 triples, display reduced leaf length, compared to wild type. Using the paradermal analysis, we conclude that the reduced leaf size of lngq is due to decreased cell elongation in the direction of longitudinal leaf growth, and not decreased cell proliferation. This data indicate that LNG1/2/3/4 are functionally redundant, and are involved in polar cell elongation in Arabidopsis leaf. Using a biophysical approach, we show that the LNGs contribute to maintain high turgor pressure, thus regulating turgor pressure-dependent polar cell elongation. In addition, gene expression analysis showed that LNGs positively regulate the expression of the cell wall modifying enzyme encoded by a multi-gene family, xyloglucan endotransglucosylase/hydrolase (XTH). Taking all of these together, we propose that LNG related genes play an important role in polar cell elongation by changing turgor pressure and controlling the activation of XTH17 and XTH24.


PLOS ONE | 2018

Endoplasmic reticulum retention motif fused to recombinant anti-cancer monoclonal antibody (mAb) CO17-1A affects mAb expression and plant stress response

Ilchan Song; Yang Joo Kang; Young Koung Lee; Soon-Chul Myung; Kisung Ko

The endoplasmic reticulum (ER) is the main site of protein synthesis, folding, and secretion to other organelles. The capacity of the ER to process proteins is limited, and excessive accumulation of unfolded and misfolded proteins can induce ER stress, which is associated with plant diseases. Here, a transgenic Arabidopsis system was established to express anti-cancer monoclonal antibodies (mAbs) that recognize the tumor-associated antigen GA733-2. Monoclonal antibody (mAb) CO17-1A recognize a tumor-associated epitope expressed on the colorectal cancer cell surface. The ER retention Lys-Asp-Glu-Leu (KDEL) motif sequence was added to the C-terminus of the heavy chain to retain anti-colorectal cancer mAbs in the ER, consequently boosting mAb production. Agrobacterium-mediated floral dip transformation was used to generate T1 transformants, and homozygous T4 seeds obtained from transgenic Arabidopsis plants expressing anti-colorectal cancer mAbs were used to confirm the physiological effects of KDEL tagging. Germination rates were not significantly different between both plants expressing mAb CO without KDEL mAb CO (CO plant) and mAb CO with KDEL mAb COK (COK plant). However, COK plants primary root lengths were shorter than those of CO plants and non-transgenic Arabidopsis plants in in vitro media. Most ER stress-related genes, with the exception of bZIP28 and IRE1a, were upregulated in COK plants compared to CO plants. Western blot and SDS-PAGE analyses showed that COK plants exhibited up to five times higher expression and mAb amounts than plants. Enhanced expression in mAb COK plants was confirmed by immunohistochemical analyses. mAb COK was distributed across most of the area of leaf tissues, whereas mAb CO was mainly distributed in extracellular areas. Surface plasmon resonance analyses revealed that mAb CO and mAb COK possessed equivalent or slightly better binding activities to antigen EpCAM compared to a commercially available parental antibody. N-glycosylation analysis showed that mAb CO had plant specific residues whereas mAb COK mainly showed an oligo-mannose N-glycan structure without the plant specific glycan residues. In this study, the reduction of plant growth and biomass induced by ER retention signal peptide might be only in in vitro conditions, and thus should be carefully considered for the initial screening for transgenic lines on culture media. Taken together, nevertheless the fusion of ER retention signal peptide is an effective approach for enhancing the yields of recombinant proteins in vivo.

Collaboration


Dive into the Young Koung Lee's collaboration.

Top Co-Authors

Avatar

Yinping Jiao

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

In-Jung Kim

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamish S. Scott

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar

Andrew Olson

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Doreen Ware

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joseph Mulvaney

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joshua C. Stein

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kapeel Chougule

Cold Spring Harbor Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge