Young-Mee Moon
Catholic University of Korea
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Young-Mee Moon.
Arthritis Research & Therapy | 2004
Sue-Yun Hwang; Ju-Young Kim; Kyoung-Woon Kim; Mi-Kyung Park; Young-Mee Moon; Wan-Uk Kim; Ho-Youn Kim
Recent studies of the pathogenesis of rheumatoid arthritis (RA) have revealed that both synovial fibroblasts and T cells participate in the perpetuation of joint inflammation as dynamic partners in a mutual activation feedback, via secretion of cytokines and chemokines that stimulate each other. In this study, we investigated the role of IL-17, a major Th1 cytokine produced by activated T cells, in the activation of RA synovial fibroblasts. Transcripts of IL-17R (IL-17 receptor) and IL-17RB (IL-17 receptor B) were present in fibroblast-like synoviocytes (FLS) of RA patients. IL-17R responded with increased expression upon in vitro stimulation with IL-17, while the level of IL-17RB did not change. IL-17 enhanced the production of IL-6 and IL-8 in FLS, as previously shown, but did not affect the synthesis of IL-15. IL-17 appears to be a stronger inducer of IL-6 and IL-8 than IL-15, and even exerted activation comparable to that of IL-1β in RA FLS. IL-17-mediated induction of IL-6 and IL-8 was transduced via activation of phosphatidylinositol 3-kinase/Akt and NF-κB, while CD40 ligation and p38 MAPK (mitogen-activated protein kinase) are not likely to partake in the process. Together these results suggest that IL-17 is capable of more than accessory roles in the activation of RA FLS and provide grounds for targeting IL-17-associated pathways in therapeutic modulation of arthritis inflammation.
Journal of Immunology | 2008
Ji Hyeon Ju; Mi-La Cho; Young-Mee Moon; Hye-Joa Oh; Jin-Sil Park; Joo-Youn Jhun; So Youn Min; Young-Gyu Cho; Kyung-Su Park; Chong-Hyeon Yoon; Jun-Ki Min; Sung-Hwan Park; Young-Chul Sung; Ho-Youn Kim
IL-23, a clinically novel cytokine, targets CD4+ T cells. Recent IL-1Ra−/− mouse studies have demonstrated that IL-23 indirectly stimulates the differentiation of osteoclast precursors by enhancing IL-17 release from CD4+ T cells. IL-17, in turn, stimulates osteoclastogenesis in osteoclast precursor cells. In this study, we found that IL-23 up-regulates receptor activator of NF-κB ligand expression by CD4+ T cells, and thus contributes to osteoclastogenesis. This indirect pathway is mediated by NF-κB and STAT3. We have also demonstrated that IL-23 can influence osteoclastogenesis positively under the special conditions in the IL-1-dominant milieu of IL-1Ra−/− mice. We propose that IL-23-enhanced osteoclastogenesis is mediated mainly by CD4+ T cells. The results of this study show that IL-23 is a promising therapeutic target for the treatment of arthritis-associated bone destruction.
Journal of Autoimmunity | 2010
Hyeok-Jae Ko; Mi-La Cho; Seon-Yeong Lee; Hye-Jwa Oh; Yu-Jung Heo; Young-Mee Moon; Chang-Min Kang; Seung-Ki Kwok; Ji Hyeon Ju; Sung-Hwan Park; Kyung-Su Park; Ho-Youn Kim
Cytotoxic T lymphocyte antigen-4 (CTLA4) and IgG fusion protein, CTLA4-Ig, is a therapeutic agent used for rheumatoid arthritis. It binds B7 molecules on dendritic cells (DCs) and thereby blocks B7/CD28 costimulatory interaction and inhibits effective T cell proliferation. However, the effect of CTLA4-Ig on the regulatory T cell (Treg) is still not known. In this study, we investigated the influence of CTLA4-Ig on the CD4+CD25+Foxp3+ Treg population in collagen-induced arthritis (CIA) mouse model. CTLA4-Ig suppressed CIA and increased the CD4+CD25+Foxp3+ Treg population in joint and spleen. When CD11c + DCs and CD4+T cells from CIA mice were cultured with anti-CD3, CTLA4-Ig increased the CD4+CD25 + Foxp3+ Treg population in a TGF-beta-dependent manner. When CD11c + DCs from CIA mice were treated with CTLA4-Ig and adoptively transferred into CIA-induced mice, arthritis did not develop in association with the increase in CD4+CD25+Foxp3+ Treg population. However, in CTLA4-Ig-untreated DC-transferred CIA mice, arthritis developed and then rapidly progressed. Our study demonstrated that CTLA4-Ig suppressed CIA by modifying DCs from CIA mice into tolerogenic DCs to increase the CD4+CD25+Foxp3+ Treg population and this seems to be the new immune regulatory mechanism of CTLA4-Ig.
Arthritis Research & Therapy | 2012
Young-Mee Moon; Bo-Young Yoon; Yang-Mi Her; Hye-Joa Oh; Jaeseon Lee; Kyoung-Woon Kim; Seon-Yeong Lee; Yun-Ju Woo; Kyung-Su Park; Sung-Hwan Park; Ho-Youn Kim; Mi-La Cho
IntroductionInterleukin (IL)-32 and IL-17 play critical roles in pro-inflammatory responses and are highly expressed in the synovium of patients with rheumatoid arthritis (RA). We investigated the relations between these two cytokines (IL-17 and IL-32) for their ability to induce each other and to stimulate osteoclasts in RA fibroblast-like synoviocytes (FLSs) and T cells.MethodsFLSs were isolated through surgical synovectomy obtained from patients with RA or osteoarthritis (OA). Real-time PCR were performed to evaluate the expression of IL-32, IL-17 and osteoclast-related genes. Immunohistochemical staining and tartrate-resistant acid phosphatase (TRAP) staining were performed to determine the distribution of inflammatory cytokines and the presence of osteoclastogenesis.ResultsIL-17 induced the expression of IL-32 in the FLSs from RA patients, as assessed by microarray. IL-32 production was increased by IL-17. IL-32 in the FLSs from RA patients induced the production of IL-17 in CD4+ T cells. IL-32 and IL-17 were colocalized near TRAP-positive areas in joint specimens. IL-17 and IL-32 synergistically induced the differentiation of osteoclasts, as demonstrated by the expression of osteoclast-related genes. IL-32 and IL-17 also could induce resorption by osteoclasts in a RANKL-dependent manner.ConclusionsIL-17 affected the expression of IL-32 in FLSs of RA patients and IL-32 induced the production of IL-17 in CD4+ T cells. Both IL-17 and IL-32 cytokines can reciprocally influence each others production and amplify the function of osteoclastogenesis in the in RA synovium. Separately, IL-17 and IL-32 each stimulated osteoclastogenesis without RANKL. Together, the two cytokines synergistically amplified the differentiation of osteoclasts, independent of RANKL stimulation.
PLOS ONE | 2014
Eun-Ji Yang; Jennifer Lee; Seon-Young Lee; Eun-Kyung Kim; Young-Mee Moon; Young Ok Jung; Sung-Hwan Park; Mi-La Cho
Epigallocatechin-3-gallate (EGCG) is a green tea polyphenol exerting potent anti-oxidant and anti-inflammatory effects by inhibiting signaling and gene expression. The objective of the study was to evaluate the effect of EGCG on interleukin (IL)-1 receptor antagonist knockout (IL-1RaKO) autoimmune arthritis models. IL-1RaKO arthritis models were injected intraperitoneally with EGCG three times per week after the first immunization. EGCG decreased the arthritis index and showed protective effects against joint destruction in the IL-1RaKO arthritis models. The expression of pro-inflammatory cytokines, oxidative stress proteins, and p-STAT3 (Y705) and p-STAT3 (S727), mTOR and HIF-1α were significantly lower in mice treated with EGCG. EGCG reduced osteoclast markers in vivo and in vitro along with anti-osteoclastic activity was observed in EGCG-treated IL-1RaKO mice. The proportion of Foxp3+ Treg cells increased in the spleens of mice treated with EGCG, whereas the proportion of Th17 cells reduced. In vitro, p-STAT3 (Y705) and p-STAT3 (S727), HIF1α and glycolytic pathway molecules were decreased by EGCG. EGCG suppressed the activation of mTOR and subsequently HIF-1α, which is considered as a metabolic check point of Th17/Treg differentiation supporting the therapeutic potential of EGCG in autoimmune arthritis.
Arthritis & Rheumatism | 2013
Jin-Sil Park; Mi-Ae Lim; Mi-La Cho; Jun-Geol Ryu; Young-Mee Moon; Joo-Yeon Jhun; Jae-Kyeong Byun; Eun-Kyung Kim; Sue-Yun Hwang; Ji Hyeon Ju; Seung-Ki Kwok; Ho-Youn Kim
OBJECTIVE To investigate the connection between p53 and interleukin-17-producing Th17 cell/Treg cell balance in rheumatoid arthritis (RA). METHODS Th17 cell and Treg cell frequencies were analyzed by flow cytometry, and cytokine levels in the supernatant were determined using enzyme-linked immunosorbent assays. The expression of transcription factors was analyzed by immunostaining and Western blotting, and the interactions between p53 and STAT-3 or STAT-5 were determined by immunoprecipitation-Western blot analysis. A p53 agonist was administered in the collagen-induced arthritis (CIA) model, and the effects in vivo were determined. RESULTS CD4+ T cells from p53-/- mice decreased the activity of STAT-5, lowered the level of phosphorylated STAT-5, and compromised Treg cell differentiation. The protein p53 bound STAT-5 directly, and this interaction was enhanced with increasing p53 activity. Under inflammatory conditions, p53 suppressed Th17 cell differentiation and skewed T cells toward Treg cell differentiation through the activation of STAT-5 signaling cascades. In mice with CIA, injection of a p53 overexpression vector or an antagonist of Mdm2 had the effect of controlling arthritis development in vivo. The regulatory effect of p53 was recapitulated in the cells of RA patients, with more pronounced suppression due to the repressed status of p53 in RA. CONCLUSION We demonstrated a link between p53-mediated and STAT-mediated regulation of Th17 cells/Treg cells in RA. Our results suggest that factors involved in this pathway might constitute novel therapeutic targets for the treatment of RA.
The Journal of Rheumatology | 2009
Jun-Hee Lee; Mi-La Cho; Ju-In Kim; Young-Mee Moon; Hye-Jwa Oh; Geun-Tae Kim; Sun Ryu; Seung-Hoon Baek; Sun Hee Lee; Ho-Youn Kim; Sung-Il Kim
Objective. To examine the effect of interleukin 17 (IL-17) on the expression of Toll-like receptor (TLR)-2, 4, and 9 in collagen-induced arthritis (CIA) in mice. Methods. On Days 28 and 32 after induction of CIA in mice, phosphate-buffered saline (PBS group) or IL-17 (IL-17 group) was injected into both knee joints. On Day 35, mice were sacrificed. The severity of knee joint arthritis, synovial inflammation, and bone destruction was measured by a scoring system using macrography and histological analysis. Synovial expression of TLR-2, 4, 9, IL-17, IL-1ß, tumor necrosis factor-α (TNF-α), and IL-6 was determined by real-time PCR and immunohistochemistry. Synoviocytes of CIA mice were cultured with IL-17 and with neutralizing antibodies to cytokine, and the expression of TLR-2, 4, 9, IL-1ß, TNF-α, and IL-6 was determined by real-time RT-PCR. Results. In CIA mice, knee arthritis scores, synovial inflammation, bone destruction scores, and expression of synovial TLR-2, 4, and 9, IL-17, IL-1ß, TNF-α and IL-6 were higher in the IL-17 and PBS groups than in normal DBA1 mice. These variables were also significantly higher in the IL-17 group than in the PBS group. In CIA synoviocytes, IL-17 increased the expression of TLR-2, 4, and 9, and this effect was significantly alleviated by neutralizing antibodies to IL-17, IL-1ß, and IL-6. Conclusion. IL-17 aggravates joint inflammation and destruction, and increases the synovial expression of TLR-2, 4, and 9 by increasing IL-1ß and IL-6. These results imply that the IL-17-induced increase in expression of TLR-2, 4, and 9, and IL-1ß and IL-6 production are involved in the IL-17-induced aggravation of arthritis.
Arthritis & Rheumatism | 2014
Young-Mee Moon; Jennifer Lee; Seon-Yeong Lee; Yang-Mi Her; Jun-Geol Ryu; Eun-Kyung Kim; Hea-Jin Son; Seung-Ki Kwok; Ji Hyeon Ju; Chul-Woo Yang; Sung-Hwan Park; Ho-Youn Kim; Mi-La Cho
STAT‐3 is a key transcriptional factor in the interleukin‐6 (IL‐6)–mediated differentiation of Th17 cells. Because Th17 is believed to be a central player in rheumatoid arthritis (RA), we sought to evaluate whether an endogenous inhibitor of the STAT3 gene, GRIM‐19 (gene associated with retinoid–interferon–induced mortality 19), could attenuate the progression and severity of murine collagen‐induced arthritis (CIA) through suppression of Th17 cells and, reciprocally, could increase expression of Treg cells.
Arthritis & Rheumatism | 2014
Su-Jin Moon; Mi-Ae Lim; Jin-Sil Park; Jae-Kyeong Byun; Sung-Min Kim; Mi-Kyung Park; Eun-Kyung Kim; Young-Mee Moon; Jun-Ki Min; Sung-Min Ahn; Sung-Hwan Park; Mi-La Cho
Dual‐specificity phosphatase 5 (DUSP‐5) is a phosphatase that specifically dephosphorylates both phosphoserine and phosphotyrosine residues of MAPK. The dysregulated activation of MAPK contributes to the pathogenesis of rheumatoid arthritis. This study was undertaken to investigate the therapeutic potential of DUSP‐5 in preventing the development of autoimmune arthritis in an animal model.
Immunology Letters | 2011
Young-Eun Park; Yun-Ju Woo; Seong-Hu Park; Young-Mee Moon; Hye-Jwa Oh; Ju-In Kim; Hua-Shu Jin; Seung-Hoon Baek; Geun-Tae Kim; Jun-Hee Lee; Mi-La Cho; Sung-Il Kim
IL-17 plays important roles in synovial inflammation and bone destruction in the mouse model of autoimmune arthritis and in rheumatoid arthritis (RA). Cadherin-11 determines the behavior of synovial cells in their proinflammatory and destructive tissue response in inflammatory arthritis, and promotes the invasive behavior of fibroblast-like synoviocytes (FLS). The purpose of this study was to examine the effect of IL-17 on the expression of cadherin-11 in autoimmune experimental arthritis and in RA synovium. The severity of synovial inflammation and bone destruction were examined in IL-17-injected knee joints of mice with collagen-induced arthritis (CIA). Cadherin-11 expression was examined in the synovium of mice with CIA, of IL-1 receptor antagonist (IL-1Ra)-deficient mice and of patients with RA and osteoarthritis (OA). Cadherin-11 expression was also examined in the synovium of IL-17 injected knee joints from CIA mice and in IL-17-stimulated FLS of CIA mice and RA patients. IL-17 aggravated synovial inflammation and bone destruction in CIA. By immunohistochemistry, cadherin-11 expression was increased in the synovium of mice with CIA and IL-1Ra-deficient mice and in patients with RA. Synovial cadherin-11 expression in IL-17-injected knee joints, measured by real-time RT-PCR, Western blot and immunohistochemistry, was increased in CIA. Cadherin-11 expression was significantly increased by IL-17 in cultured FLS of CIA mice and RA patients, and these increases were blocked by NF-κB inhibitors. IL-17 increased the expression of cadherin-11 in vivo and in vitro, which implies that an IL-17-induced increase of cadherin-11 is involved in IL-17-induced aggravation of joint destruction and inflammation.