Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young Rae Kim is active.

Publication


Featured researches published by Young Rae Kim.


International Journal of Molecular Medicine | 2015

Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis

Jongseok Lee; Young Rae Kim; In Gyu Song; Suk-Jin Ha; Young Eon Kim; Nam-In Baek; Eock Kee Hong

The extract obtained from berries contains high amounts of anthocyanins, and this extract is used as a phytotherapeutic agent for different types of diseases. In this study, we examined the cytoprotective effects of cyanidin-3-glucoside (C3G) isolated from mulberry fruit against pancreatic β-cell apoptosis caused by hydrogen peroxide (H2O2)-induced oxidative stress. The MIN6 pancreatic β-cells were used to investigate the cytoprotective effects of C3G on the oxidative stress-induced apoptosis of cells. Cell viability was examined by MTT assay and lipid peroxidation was assayed by thiobarbituric acid (TBA) reaction. Immunofluorescence staining, flow cytometry and western blot analysis were also used to determine apoptosis and the expression of proteins associated with apoptosis. Our results revealed that H2O2 increased the rate of apoptosis by stimulating various pro-apoptotic processes, such as the generation of intracellular reactive oxygen species (ROS), lipid peroxidation, DNA fragmentation and caspase-3 activation. However, C3G reduced the H2O2-induced cell death in the MIN6N pancreatic β-cells. In addition, we confirmed that H2O2 activated mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK. C3G inhibited the phosphorylation of ERK and p38 without inducing the phosphorylation of JNK. Furthermore, C3G regulated the intrinsic apoptotic pathway-associated proteins, such as proteins belonging to the Bcl-2 family, cytochrome c and caspase-3. Taken together, our results suggest that C3G isolated from mulberry fruit has potential for use as a phytotherapeutic agent for the prevention of diabetes by preventing oxidative stress-induced β-cell apoptosis.


Oncology Reports | 2014

Polysaccharide from Inonotus obliquus inhibits migration and invasion in B16-F10 cells by suppressing MMP‑2 and MMP‑9 via downregulation of NF-κB signaling pathway

Ki Rim Lee; Jong Seok Lee; Young Rae Kim; In Gyu Song; Eock Kee Hong

Polysaccharides derived from Inonotus obliquus (PIO) are known to possess multiple pharmacological activities including antitumor activity. However, the possible molecular mechanisms of these activities are unknown. In the present study, we determined the anti-metastatic potential and signaling pathways of PIO in the highly metastatic B16-F10 mouse melanoma cell line in vitro. We found that PIO suppressed the migration and invasive ability of B16-F10 cells and decreased the expression levels and activities of matrix metalloproteinase (MMP)-2 and MMP-9. In addition, PIO decreased the phosphorylation levels of extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK); PIO also decreased the expression level of cyclooxygenase (COX)‑2 and inhibited the nuclear translocation of nuclear factor κB (NF-κB) in B16-F10 melanoma cells. These results suggest that PIO could suppress the invasion and migration of B16-F10 melanoma cells by reducing the expression levels and activities of MMP-2 and MMP-9 through suppressing MAPK, COX-2 and NF-κB signaling pathways.


Molecular Medicine Reports | 2015

Cyanidin-3-glucoside isolated from mulberry fruits protects pancreatic β-cells against glucotoxicity-induced apoptosis

Jong Seok Lee; Young Rae Kim; Jun Myoung Park; Young Eon Kim; Nam-In Baek; Eock Kee Hong

The present study investigated the cytoprotective effects of cyanidin‑3‑glucoside (C3G), isolated from mulberry fruits, on the glucotoxicity‑induced apoptosis of pancreatic β‑cells to evaluate the antidiabetic effects of this compound. MIN6N pancreatic β‑cells were used to investigate the cytoprotective effects of C3G. In addition, the effects of C3G on the glucotoxicity‑induced apoptosis of pancreatic β‑cells was evaluated using MTT assay, immunofluorescent staining, flow cytometric and western blot analyses. The pancreatic β‑cells cultured under high glucose conditions exhibited distinct apoptotic features. C3G decreased the generation of intracellular reactive oxygen species, DNA fragmentation and the rate of apoptosis. C3G also prevented pancreatic β‑cell apoptosis induced by high glucose conditions by interfering with the intrinsic apoptotic pathways. In addition, C3G treatment resulted in increased insulin secretion compared with treatment with high glucose only. In conclusion, the results of the present study suggested that C3G obtained from mulberry fruits may be a potential phytotherapeutic agent for the prevention of diabetes.


Journal of Medicinal Food | 2011

Hispidin Isolated from Phellinus linteus Protects Against Hydrogen Peroxide–Induced Oxidative Stress in Pancreatic MIN6N β-Cells

Jung-Hyun Lee; Jongseok Lee; Young Rae Kim; Woo chul Jung; Keun Eok Lee; Shin Young Lee; Eock Kee Hong

Reactive oxygen species (ROS) have been shown to cause DNA damage, protein denaturation, loss of antioxidative enzyme activity, and lipid peroxidation. Thus, ROS are associated with tissue damage and are considered to be prime contributing factors in inflammation, diabetes, aging, and cancer. In this study, we investigated whether or not hispidin protects pancreatic MIN6N β-cells from oxidative stress caused by hydrogen peroxide. Treatment of MIN6N β-cells with 0.5 mM hydrogen peroxide for 4 hours caused significant loss of cell viability and an increase in the number of apoptotic cells. However, pretreatment of MIN6N β-cells with hispidin for 24 hours reduced loss of cell viability and decreased the number of apoptotic cells. In addition, 70 μM hispidin significantly scavenged intracellular ROS and inhibited apoptosis and caspase-3 induced by hydrogen peroxide. Furthermore, the generation of thiobarbituric acid-reactive substances was inhibited in the presence of hispidin in a dose-dependent manner. Also, 70 μM hispidin significantly increased insulin secretion in hydrogen peroxide-treated MIN6N β-cells. These results suggest that hispidin may be effective for protecting MIN6N β-cells from ROS toxicity in diabetes.


Molecules | 2014

Mulberry Fruit Extract Protects Pancreatic β-Cells against Hydrogen Peroxide-Induced Apoptosis via Antioxidative Activity

Jongseok Lee; Young Rae Kim; Jun Myoung Park; Suk-Jin Ha; Young Eon Kim; Nam-In Baek; Eock Kee Hong

Among the many environmental stresses, excessive production of reactive oxygen species (ROS) and the ensuring oxidative stress are known to cause significant cellular damage. This has clinical implications in the onset of type 1 diabetes, which is triggered by the destruction of pancreatic β-cells and is associated with oxidative stress. In this study, we investigated the protective and antioxidative effects of mulberry extract (ME) in insulin-producing pancreatic β-cells. We found that ME protects pancreatic β-cells against hydrogen peroxide (H2O2)-induced oxidative stress and the associated apoptotic cell death. ME treatment significantly reduced the levels of H2O2-induced 2-diphenyl-1-picrylhydrazyl (DPPH) radicals, and lipid peroxidation and intracellular ROS accumulation. In addition, ME inhibited DNA condensation and/or fragmentation induced by H2O2. These results suggest that ME protects pancreatic β-cells against hydrogen peroxide-induced oxidative stress.


International Journal of Molecular Medicine | 2014

Effects of mulberry ethanol extracts on hydrogen peroxide-induced oxidative stress in pancreatic β-cells

Young Rae Kim; Jong Seok Lee; Ki Rim Lee; Young Eon Kim; Nam-In Baek; Eock Kee Hong

Reactive oxygen species (ROS) are key mediators of mammalian cellular damage and are associated with diseases such as aging, arteriosclerosis, inflammation, rheumatoid arthritis and diabetes. Type 1 diabetes develops upon the destruction of pancreatic β-cells, which is partly due to ROS activity. In this study, we investigated the cytoprotective and anti-oxidative effects of fractionated mulberry extracts in mouse insulin-producing pancreatic β-cells (MIN6N cells). Treatment with hydrogen peroxide (H2O2) induced significant cell death and increased intracellular ROS levels, lipid peroxidation and DNA fragmentation in the MIN6N cells. Fractionated mulberry extracts significantly reduced the H2O2-dependent production of intracellular ROS, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and lipid peroxidation. In addition, mulberry extracts inhibited DNA fragmentation induced by H2O2. Thus, the antioxidant properties of mulberry extracts in pancreatic β-cells may be exploited for the prevention or treatment of type 1 diabetes.


한국생물공학회 학술대회 | 2014

Effect of Cyanidin-3-Glucoside on Hydrogen Peroxide-Induced Caspase-Dependent Apoptosis in MIN6N Beta-Cells

Jun Myoung Park; Young Rae Kim; Eock Kee Hong


한국생물공학회 학술대회 | 2014

Effect of Cyanidin-3-Glucoside Isolated from Mulberry on Streptozotocin-Induced Diabetic Mouse

Ki Rim Lee; Young Rae Kim; Eock Kee Hong


한국생물공학회 학술대회 | 2013

The Effects of Mulberry Against Hydrogen Peroxide-Induced Oxidative Damage in Pancreatic β-cell

Ye Chan Sim; Young Rae Kim; Eock Kee Hong


한국생물공학회 학술대회 | 2013

Anthocyanin from Mulberry Extract Protects Hyperglycemia-Induced Pancreatic β-cell Apoptosis

Young Rae Kim; Jun Myoung Park; Ye Chan Sim; Eock Kee Hong

Collaboration


Dive into the Young Rae Kim's collaboration.

Top Co-Authors

Avatar

Eock Kee Hong

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Jun Myoung Park

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jong Seok Lee

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Ki Rim Lee

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

In Gyu Song

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Suk-Jin Ha

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Ye Chan Sim

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Jeong Eun Song

Kangwon National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge