Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young-Yun Kong is active.

Publication


Featured researches published by Young-Yun Kong.


Nature | 1999

OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis

Young-Yun Kong; Hiroki Yoshida; Ildiko Sarosi; Hong-Lin Tan; Emma Timms; Casey Capparelli; Sean Morony; Antonio J. Oliveira-dos-Santos; Gwyneth Van; Annick Itie; Wilson Khoo; Andrew Wakeham; Colin R. Dunstan; David L. Lacey; Tak W. Mak; William J. Boyle; Josef M. Penninger

The tumour-necrosis-factor-family molecule osteoprotegerin ligand (OPGL; also known as TRANCE, RANKL and ODF) has been identified as a potential osteoclast differentiation factor and regulator of interactions between T cells and dendritic cells in vitro. Mice with a disrupted opgl gene show severe osteopetrosis and a defect in tooth eruption, and completely lack osteoclasts as a result of an inability of osteoblasts to support osteoclastogenesis. Although dendritic cells appear normal, opgl-deficient mice exhibit defects in early differentiation of T and B lymphocytes. Surprisingly, opgl-deficient mice lack all lymph nodes but have normal splenic structure and Peyers patches. Thus OPGL is a new regulator of lymph-node organogenesis and lymphocyte development and is an essential osteoclast differentiation factor in vivo.


Nature | 1999

Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand.

Young-Yun Kong; Ulrich Feige; Iidiko Sarosi; Brad Bolon; Anna Tafuri; Sean Morony; Casey Capparelli; Ji Li; Robin Elliott; Susan McCabe; Thomas Wong; Giuseppe Campagnuolo; Erika Moran; Earl R. Bogoch; Gwyneth Van; Linh T. Nguyen; Pamela S. Ohashi; David L. Lacey; Eleanor Fish; William J. Boyle; Josef M. Penninger

Bone remodelling and bone loss are controlled by a balance between the tumour necrosis factor family molecule osteoprotegerin ligand (OPGL) and its decoy receptor osteoprotegerin (OPG). In addition, OPGL regulates lymph node organogenesis, lymphocyte development and interactions between T cells and dendritic cells in the immune system. The OPGL receptor, RANK, is expressed on chondrocytes, osteoclast precursors and mature osteoclasts. OPGL expression in T cells is induced by antigen receptor engagement, which suggests that activated T cells may influence bone metabolism through OPGL and RANK. Here we report that activated T cells can directly trigger osteoclastogenesis through OPGL. Systemic activation of T cells in vivo leads to an OPGL-mediated increase in osteoclastogenesis and bone loss. In a T-cell-dependent model of rat adjuvant arthritis characterized by severe joint inflammation, bone and cartilage destruction and crippling, blocking of OPGL through osteoprotegerin treatment at the onset of disease prevents bone and cartilage destruction but not inflammation. These results show that both systemic and local T-cell activation can lead to OPGL production and subsequent bone loss, and they provide a novel paradigm for T cells as regulators of bone physiology.


Nature | 2001

Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death

Nicholas Joza; Santos A. Susin; Eric Daugas; William L. Stanford; Sarah K. Cho; Carol Y. J. Li; Takehiko Sasaki; Andrew J. Elia; H.-Y. Mary Cheng; Luigi Ravagnan; Karine F. Ferri; Naoufal Zamzami; Andrew Wakeham; Razqallah Hakem; Hiroki Yoshida; Young-Yun Kong; Tak W. Mak; Juan Carlos Zúñiga-Pflücker; Guido Kroemer; Josef M. Penninger

Programmed cell death is a fundamental requirement for embryogenesis, organ metamorphosis and tissue homeostasis. In mammals, release of mitochondrial cytochrome c leads to the cytosolic assembly of the apoptosome—a caspase activation complex involving Apaf1 and caspase-9 that induces hallmarks of apoptosis. There are, however, mitochondrially regulated cell death pathways that are independent of Apaf1/caspase-9. We have previously cloned a molecule associated with programmed cell death called apoptosis-inducing factor (AIF). Like cytochrome c, AIF is localized to mitochondria and released in response to death stimuli. Here we show that genetic inactivation of AIF renders embryonic stem cells resistant to cell death after serum deprivation. Moreover, AIF is essential for programmed cell death during cavitation of embryoid bodies—the very first wave of cell death indispensable for mouse morphogenesis. AIF-dependent cell death displays structural features of apoptosis, and can be genetically uncoupled from Apaf1 and caspase-9 expression. Our data provide genetic evidence for a caspase-independent pathway of programmed cell death that controls early morphogenesis.


Cell | 1998

Apaf1 is required for mitochondrial pathways of apoptosis and brain development.

Hiroki Yoshida; Young-Yun Kong; Ritsuko Yoshida; Andrew J. Elia; Anne Hakem; Razqallah Hakem; Josef M. Penninger; Tak W. Mak

Apoptosis is essential for the precise regulation of cellular homeostasis and development. The role in vivo of Apaf1, a mammalian homolog of C. elegans CED-4, was investigated in gene-targeted Apaf1-/- mice. Apaf1-deficient mice exhibited reduced apoptosis in the brain and striking craniofacial abnormalities with hyperproliferation of neuronal cells. Apaf1-deficient cells were resistant to a variety of apoptotic stimuli, and the processing of Caspases 2, 3, and 8 was impaired. However, both Apaf1-/- thymocytes and activated T lymphocytes were sensitive to Fas-induced killing, showing that Fas-mediated apoptosis in these cells is independent of Apaf1. These data indicate that Apaf1 plays a central role in the common events of mitochondria-dependent apoptosis in most death pathways and that this role is critical for normal development.


Cell | 2000

The Osteoclast Differentiation Factor Osteoprotegerin-Ligand Is Essential for Mammary Gland Development

Jimmie E. Fata; Young-Yun Kong; Ji Li; Takehiko Sasaki; Junko Irie-Sasaki; Roger A. Moorehead; Robin Elliott; Sheila Scully; Evelyn B. Voura; David L. Lacey; William J. Boyle; Rama Khokha; Josef M. Penninger

Osteoprotegerin-ligand (OPGL) is a key osteoclast differentiation/activation factor essential for bone remodeling. We report that mice lacking OPGL or its receptor RANK fail to form lobulo-alveolar mammary structures during pregnancy, resulting in death of newborns. Transplantation and OPGL-rescue experiments in opgl-/- and rank-/- pregnant females showed that OPGL acts directly on RANK-expressing mammary epithelial cells. The effects of OPGL are autonomous to epithelial cells. The mammary gland defect in female opgl-/- mice is characterized by enhanced apoptosis and failures in proliferation and PKB activation in lobulo-alveolar buds that can be reversed by recombinant OPGL treatment. These data provide a novel paradigm in mammary gland development and an evolutionary rationale for hormonal regulation and gender bias of osteoporosis in females.


Nature | 2000

Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b.

Kurt Bachmaier; Connie Krawczyk; Ivona Kozieradzki; Young-Yun Kong; Takehiko Sasaki; Antonio J. Oliveira-dos-Santos; Sanjeev Mariathasan; Dennis Bouchard; Andrew Wakeham; Annick Itie; Jenny Le; Pamela S. Ohashi; Ildiko Sarosi; Hiroshi Nishina; Stan Lipkowitz; Josef Penninger

The signalling thresholds of antigen receptors and co-stimulatory receptors determine immunity or tolerance to self molecules. Changes in co-stimulatory pathways can lead to enhanced activation of lymphocytes and autoimmunity, or the induction of clonal anergy. The molecular mechanisms that maintain immunotolerance in vivo and integrate co-stimulatory signals with antigen receptor signals in T and B lymphocytes are poorly understood. Members of the Cbl/Sli family of molecular adaptors function downstream from growth factor and antigen receptors. Here we show that gene-targeted mice lacking the adaptor Cbl-b develop spontaneous autoimmunity characterized by auto-antibody production, infiltration of activated T and B lymphocytes into multiple organs, and parenchymal damage. Resting cbl-b -/- lymphocytes hyperproliferate upon antigen receptor stimulation, and cbl-b-/- T cells display specific hyperproduction of the T-cell growth factor interleukin-2, but not interferon-γ or tumour necrosis factor-α. Mutation of Cbl-b uncouples T-cell proliferation, interleukin-2 production and phosphorylation of the GDP/GTP exchange factor Vav1 from the requirement for CD28 co-stimulation. Cbl-b is thus a key regulator of activation thresholds in mature lymphocytes and immunological tolerance and autoimmunity.


Nature | 2006

Regulation of cancer cell migration and bone metastasis by RANKL

D. Holstead Jones; Tomoki Nakashima; Otto Sanchez; Ivona Kozieradzki; Svetlana V. Komarova; Ildiko Sarosi; Sean Morony; Evelyn Rubin; Carlo V. Hojilla; Vukoslav Komnenovic; Young-Yun Kong; Martin Schreiber; S. Jeffrey Dixon; Stephen M. Sims; Rama Khokha; Teiji Wada; Josef M. Penninger

Bone metastases are a frequent complication of many cancers that result in severe disease burden and pain. Since the late nineteenth century, it has been thought that the microenvironment of the local host tissue actively participates in the propensity of certain cancers to metastasize to specific organs, and that bone provides an especially fertile ‘soil’. In the case of breast cancers, the local chemokine milieu is now emerging as an explanation for why these tumours preferentially metastasize to certain organs. However, as the inhibition of chemokine receptors in vivo only partially blocks metastatic behaviour, other factors must exist that regulate the preferential metastasis of breast cancer cells. Here we show that the cytokine RANKL (receptor activator of NF-κB ligand) triggers migration of human epithelial cancer cells and melanoma cells that express the receptor RANK. RANK is expressed on cancer cell lines and breast cancer cells in patients. In a mouse model of melanoma metastasis, in vivo neutralization of RANKL by osteoprotegerin results in complete protection from paralysis and a marked reduction in tumour burden in bones but not in other organs. Our data show that local differentiation factors such as RANKL have an important role in cell migration and the tissue-specific metastatic behaviour of cancer cells.


Journal of Clinical Investigation | 2000

Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection

Yen-Tung A. Teng; Hai Nguyen; Xuijuan Gao; Young-Yun Kong; Reginald M. Gorczynski; Bhagirath Singh; Richard P. Ellen; Josef M. Penninger

Periodontitis, a prime cause of tooth loss in humans, is implicated in the increased risk of systemic diseases such as heart failure, stroke, and bacterial pneumonia. The mechanisms by which periodontitis and antibacterial immunity lead to alveolar bone and tooth loss are poorly understood. To study the human immune response to specific periodontal infections, we transplanted human peripheral blood lymphocytes (HuPBLs) from periodontitis patients into NOD/SCID mice. Oral challenge of HuPBL-NOD/SCID mice with Actinobacillus actinomycetemcomitans, a well-known Gram-negative anaerobic microorganism that causes human periodontitis, activates human CD4(+) T cells in the periodontium and triggers local alveolar bone destruction. Human CD4(+) T cells, but not CD8(+) T cells or B cells, are identified as essential mediators of alveolar bone destruction. Stimulation of CD4(+) T cells by A. actinomycetemcomitans induces production of osteoprotegerin ligand (OPG-L), a key modulator of osteoclastogenesis and osteoclast activation. In vivo inhibition of OPG-L function with the decoy receptor OPG diminishes alveolar bone destruction and reduces the number of periodontal osteoclasts after microbial challenge. These data imply that the molecular explanation for alveolar bone destruction observed in periodontal infections is mediated by microorganism-triggered induction of OPG-L expression on CD4(+) T cells and the consequent activation of osteoclasts. Inhibition of OPG-L may thus have therapeutic value to prevent alveolar bone and/or tooth loss in human periodontitis.


Current Biology | 1998

Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor

K.-D. Fischer; Young-Yun Kong; Hiroshi Nishina; K. Tedford; L. E. M. Marengere; Ivona Kozieradzki; Takehiko Sasaki; M. Starr; G. Chan; S. Gardener; M. P. Nghiem; Dennis Bouchard; M. Barbacid; Alan Bernstein; J. M. Penninger

BACKGROUND Vav is a guanine-nucleotide exchange factor for the Rho-like small GTPases RhoA, Rac1 and Cdc42, which regulate cytoskeletal reorganization and activation of stress-activated protein kinases (SAPK/JNKs). Vav is expressed in hematopoietic cells and is phosphorylated in T and B cells following activation of various growth factor or antigen receptors. Vav interacts with several signaling molecules in T cells, but the functional relevance of these interactions is established only for Slp76: they cooperate to induce activity of the transcription factor NF-AT and interleukin-2 expression. We have investigated the role of Vav in T cells by generating vav-/- mice. RESULTS Mice deficient for vav were viable and healthy, but had impaired T-cell development. In vav-/- T cells, in response to activation of the T-cell receptor (TCR), cell cycle progression, induction of NF-ATc1 activity, downregulation of the cell-cycle inhibitor p27Kip1, interleukin-2 production, actin polymerization and the clustering of TCRs into patches and caps--a cytoskeletal reorganization process--were defective. TCR-mediated activation of mitogen-activated protein kinase and SAPK/JNK was unaffected. Ca2+ mobilization was impaired in vav-/- thymocytes and T cells. In wild-type cells, Vav constitutively associated with the cytoskeletal membrane anchors talin and vinculin. In the absence of Vav, phosphorylation of Slp76, Slp76-talin interactions, and recruitment of the actin cytoskeleton to the CD3 zeta chain of the TCR co-receptor were impaired. CONCLUSIONS Vav is a crucial regulator of TCR-mediated Ca2+ flux, cytoskeletal reorganization and TCR clustering, and these are required for T-cell maturation, interleukin-2 production and cell cycle progression.


Immunity | 1998

The Transcription Factor NF-ATc1 Regulates Lymphocyte Proliferation and Th2 Cytokine Production

Hiroki Yoshida; Hiroshi Nishina; Hiroaki Takimoto; Luc E. M. Marengere; Andrew Wakeham; Denis Bouchard; Young-Yun Kong; Toshiaki Ohteki; Arda Shahinian; Martin F. Bachmann; Pamela S. Ohashi; Josef Penninger; Gerald R. Crabtree; Tak W. Mak

NF-ATc1 is a member of a family of genes that encodes the cytoplasmic component of the nuclear factor of activated T cells (NF-AT). In activated T cells, nuclear NF-AT binds to the promoter regions of multiple cytokine genes and induces their transcription. The role of NF-ATc1 was investigated in recombination activating gene-1 (RAG-1)-deficient blastocyst complementation assays using homozygous NF-ATc1-/- mutant ES cell lines. NF-ATc1-/-/RAG-1-/- chimeric mice showed reduced numbers of thymocytes and impaired proliferation of peripheral lymphocytes, but normal production of IL-2. Induction in vitro of Th2 responses, as demonstrated by a decrease in IL-4 and IL-6 production, was impaired in mutant T cells. These data indicate that NF-ATc1 plays roles in the development of T lymphocytes and in the differentiation of the Th2 response.

Collaboration


Dive into the Young-Yun Kong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bon-Kyoung Koo

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ki Jun Yoon

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tak W. Mak

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Josef M. Penninger

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Juhee Shin

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ran Song

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ivona Kozieradzki

Austrian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge