Youngah Jo
Texas Tech University Health Sciences Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youngah Jo.
Biology of Reproduction | 2005
Youngah Jo; Steven R. King; Shafiq A. Khan; Douglas M. Stocco
Abstract This study investigated the roles of the protein kinase C (PKC) and protein kinase A (PKA) pathways in regulating constitutive steroidogenesis and steroidogenic acute regulatory (STAR; herein designated by its common name, StAR) protein in R2C Leydig tumor cells. Inhibition of PKC and phospholipase C resulted in significant decreases in steroid production, phosphorylation of cAMP-responsive element binding (CREB) protein, and Star gene transcription under basal conditions in R2C cells. These observations were corroborated in MA-10 and mLTC-1 Leydig tumor cell lines, in which activation of PKC by phorbol-12-myristate-13-acetate (PMA, 10 nM) increased CREB phosphorylation and total StAR (tot-StAR) protein expression. However, induction of StAR protein by PMA did not result in the expected concomitant increase in steroids because PKC failed to phosphorylate StAR, the biologically active form of the protein. However, in conjunction with PMA, minor increases in PKA activity using submaximal doses of (Bu)2cAMP (0.05–0.1 mM; a concentration range insufficient for induction of StAR), were able to stimulate dramatic increases in both phospho-StAR (P-StAR) and steroid production. Human chorionic gonadotropin stimulation also resulted in a further enhancement in P-StAR and progesterone production when added to PMA-treated MA-10 cells. Similar results for tot-StAR and P-StAR expression were observed in primary cultures of immature rat Leydig cells treated with PMA and submaximal doses of (Bu)2cAMP. In summary, the present study demonstrates that basal activities of both PKC and PKA play important roles in the constitutive steroidogenic characteristics of R2C cells. This study also demonstrates for the first time a role for PMA-induced PKC in StAR protein regulation and the requirement for submaximal doses of cAMP to produce steroids in Leydig cells.
Critical Reviews in Biochemistry and Molecular Biology | 2010
Youngah Jo; Russell A. DeBose-Boyd
Multiple mechanisms for feedback control of cholesterol synthesis converge on the rate-limiting enzyme in the pathway, 3-hydroxy-3-methylglutaryl coenzyme A reductase. This complex feedback regulatory system is mediated by sterol and nonsterol metabolites of mevalonate, the immediate product of reductase activity. One mechanism for feedback control of reductase involves rapid degradation of the enzyme from membranes of the endoplasmic reticulum (ER). This degradation results from the accumulation of sterols in ER membranes, which triggers binding of reductase to ER membrane proteins called Insig-1 and Insig-2. Insig binding leads to the recruitment of a membrane-associated ubiquitin ligase called gp78 that initiates ubiquitination of reductase. Ubiquitinated reductase then becomes extracted from ER membranes and is delivered to cytosolic 26S proteasomes through an unknown mechanism that is mediated by the gp78-associated ATPase Valosin-containing protein/p97 and appears to be augmented by nonsterol isoprenoids. Here, we will highlight several advances that have led to the current view of mechanisms for sterol-accelerated, ER-associated degradation of reductase. In addition, we will discuss potential mechanisms for other aspects of the pathway such as selection of reductase for gp78-mediated ubiquitination, extraction of the ubiquitinated enzyme from ER membranes, and the contribution of Insig-mediated degradation to overall regulation of reductase in whole animals.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Youngah Jo; Peter C. W. Lee; Peter V. Sguigna; Russell A. DeBose-Boyd
Accumulation of sterols in membranes of the endoplasmic reticulum (ER) leads to the accelerated ubiquitination and proteasomal degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids. This degradation results from sterol-induced binding of reductase to the Insig-1 or Insig-2 proteins of ER membranes. We previously reported that in immortalized human fibroblasts (SV-589 cells) Insig-1, but not Insig-2, recruits gp78, a membrane-bound RING-finger ubiquitin ligase. We now report that both Insig-1 and Insig-2 bind another membrane-bound RING-finger ubiquitin ligase called Trc8. Knockdown of either gp78 or Trc8 in SV-589 cells through RNA interference (RNAi) inhibited sterol-induced ubiquitination of reductase and inhibited sterol-induced degradation by 50–60%. The combined knockdown of gp78 and Trc8 produced a more complete inhibition of degradation (> 90%). Knockdown of gp78 led to a three to fourfold increase in levels of Trc8 and Insig-1 proteins, which opposed the inhibitory action of gp78. In contrast, knockdown of Trc8 had no effect on gp78 or Insig-1. The current results suggest that sterol-induced ubiquitination and proteasomal degradation of reductase is dictated by the complex interplay of at least four proteins: Insig-1, Insig-2, gp78, and Trc8. Variations in the concentrations of any one of these proteins may account for differences in cell- and/or tissue-specific regulation of reductase degradation.
Biology of Reproduction | 2003
Rekha M. Rao; Youngah Jo; Susan Leers-Sucheta; Himangshu S. Bose; Walter L. Miller; Salman Azhar; Douglas M. Stocco
Abstract The rat R2C Leydig tumor cell line is constitutively steroidogenic in nature, while the mouse MA-10 Leydig tumor cell line synthesizes large amounts of steroids only in response to hormonal stimulation. Earlier studies showed abundant cAMP-independent steroid production and constitutive expression of steroidogenic acute regulatory (StAR) protein in R2C cells. The objective of the current study was to identify possible genetic alterations in the R2C cell line responsible for rendering it a constitutively steroidogenic cell line, especially those that might have altered its cholesterol homeostatic mechanisms. Measurement of the levels of cholesterol esters and free cholesterol, precursors for steroidogenesis, indicated that R2C mitochondria were fourfold enriched in free cholesterol content compared with MA-10 mitochondria. In addition to the previously demonstrated increased expression of StAR protein, we show that R2C cells possess marginally enhanced protein kinase A activity, exhibit higher capacity to take up extracellular cholesterol esters, and express much higher levels of scavenger receptor-type B class 1 (SR-B1) and hormone sensitive lipase (HSL). These observations suggest that the high level of steroid biosynthesis in R2C cells is a result of the constitutive expression of the components involved in the uptake of cholesterol esters (SR-B1), their conversion to free cholesterol (HSL), and its mobilization to the inner mitochondrial membrane (StAR).
Journal of Biological Chemistry | 2010
Isamu Z. Hartman; Pingsheng Liu; John K. Zehmer; Katherine Luby-Phelps; Youngah Jo; Richard G. W. Anderson; Russell A. DeBose-Boyd
Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets.
The Journal of Steroid Biochemistry and Molecular Biology | 2003
Xing Jia Wang; Matthew T. Dyson; Youngah Jo; Darrell W. Eubank; Douglas M. Stocco
To understand the mechanism for the role of arachidonic acid (AA) in steroidogenic acute regulatory (StAR) gene transcription, sections of the -1/-966 StAR promoter were deleted to produce constructs of -1/-426, -1/-211, -1/-151, and -1/-110 and inserted into the PGL3 vector to drive luciferase expression. Results indicated that -1/-151 StAR promoter contains the elements that are most responsive to AA. Electrophoretic mobility shift assays using nuclear extracts from AA-treated MA-10 Leydig tumor cells showed that AA enhanced specific binding of the nuclear extract to a 30bp (-67/-96) sequence of the StAR promoter. Also, HPLC was used to identify AA metabolites involved in StAR gene transcription. It was found that 1mM N6,2-O-dibutyryladenosine 3:5-cyclic monophosphate (dbcAMP) significantly increased the 5-lipoxygenase metabolites, 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and 5-hydroxyeicosatetraenoic acid (5-HETE). Moreover, in the presence of 0.2mM dbcAMP addition of 20 microM 5-HPETE or 5-HETE significantly enhanced StAR protein expression and progesterone production (P<0.05). Similar results were obtained for StAR gene transcription with StAR mRNA levels and StAR promoter activities being significantly increased (P<0.05) when 5-HPETE was added to MA-10 cell cultures. In summary, the present studies demonstrated that cyclic AMP (cAMP) stimulated the production of the AA metabolites, 5-HPETE and 5-HETE, and showed that these metabolites enhanced StAR gene expression and steroid hormone production. The results further suggested that the AA-responsive element resides in the -67/-96 region of the StAR promoter.
Journal of Endocrinology | 2007
Pulak R. Manna; Youngah Jo; Douglas M. Stocco
The steroidogenic acute regulatory (StAR) protein plays a central role in the regulation of steroid biosynthesis. While steroidogenesis is influenced by many processes, their modes of actions, in a few cases, remain obscure. In this study, we explored the mechanism of action of one such signaling pathway, the extracellular signal-regulated kinase 1/2 (ERK1/2), in regulating StAR expression and steroidogenesis in conjunction with the protein kinase A (PKA) and protein kinase C (PKC) pathways. Using MA-10 mouse Leydig tumor cells, we demonstrate that the activation of PKC and PKA signaling, by phorbol-12-myristate-13-acetate (PMA) and dibutyryl cAMP (dbcAMP)/human chorionic gonadotropin (hCG) respectively, was able to phosphorylate ERK1/2, an event markedly decreased by an upstream kinase inhibitor, U0126. Treatment with PMA enhanced StAR protein expression (associated with a slight increase in progesterone synthesis) but not its phosphorylation (P-StAR), which, in contrast, coordinately increased in response to dbcAMP/hCG. Inhibition of ERK1/2 activity by U0126 decreased PMA-treated StAR expression but increased dbcAMP/hCG-mediated StAR and P-StAR; however, progesterone levels were attenuated. U0126 was found to affect StAR expression and steroidogenesis both at the transcriptional and translational levels. Further studies demonstrated that the effect of U0126 on PMA- and dbcAMP/hCG-mediated StAR expression and steroid synthesis was tightly correlated with the expression of dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1 (DAX-1) and scavenger receptor class B type 1 (SR-B1). In fact, both DAX-1 and SR-B1 appear to play important roles in hormone-regulated steroidogenesis. These findings clearly demonstrate that the ERK1/2 signaling cascade involved in regulating StAR expression and steroid synthesis is mediated by multiple factors and pathways and is stimulus specific in mouse Leydig cells.
Molecular Biology of the Cell | 2013
Youngah Jo; Isamu Z. Hartman; Russell A. DeBose-Boyd
The cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase is subjected to sterol-accelerated degradation from endoplasmic reticulum membranes. This study shows that reductase degradation is mediated by the lipid droplet–associated protein ancient ubiquitous protein-1, which facilitates binding of the E2 Ubc7 to the E3 ligases, gp78 and Trc8, that initiate reductase ubiquitination.
Journal of Biological Chemistry | 2011
Youngah Jo; Peter V. Sguigna; Russell A. DeBose-Boyd
The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway in the yeast Saccharomyces cerevisiae is mediated by two membrane-bound ubiquitin ligases, Doa10 and Hrd1. These enzymes are found in distinct multiprotein complexes that allow them to recognize and target a variety of substrates for proteasomal degradation. Although multiprotein complexes containing mammalian ERAD ubiquitin ligases likely exist, they have yet to be identified and characterized in detail. Here, we identify two ER membrane proteins, SPFH2 and TMUB1, as associated proteins of mammalian gp78, a membrane-bound ubiquitin ligase that bears significant sequence homology with mammalian Hrd1 and mediates sterol-accelerated ERAD of the cholesterol biosynthetic enzyme HMG-CoA reductase. Co-immunoprecipitation studies indicate that TMUB1 bridges SPFH2 to gp78 in ER membranes. The functional significance of these interactions is revealed by the observation that RNA interference (RNAi)-mediated knockdown of SPFH2 and TMUB1 blunts both the sterol-induced ubiquitination and degradation of endogenous reductase in HEK-293 cells. These studies mark the initial steps in the characterization of the mammalian gp78 ubiquitin ligase complex, the further elucidation of which may yield important insights into mechanisms underlying gp78-mediated ERAD.
Endocrinology | 2009
Pulak R. Manna; Matthew T. Dyson; Youngah Jo; Douglas M. Stocco
Dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1 (DAX-1) is an orphan nuclear receptor that has been demonstrated to be instrumental to the expression of the steroidogenic acute regulatory (StAR) protein that regulates steroid biosynthesis in steroidogenic cells. However, its mechanism of action remains obscure. The present investigation was aimed at exploring the molecular involvement of DAX-1 in protein kinase A (PKA)- and protein kinase C (PKC)-mediated regulation of StAR expression and its concomitant impact on steroid synthesis using MA-10 mouse Leydig tumor cells. We demonstrate that activation of the PKA and PKC pathways, by a cAMP analog dibutyryl (Bu)2cAMP [(Bu)2cAMP] and phorbol 12-myristate 13-acetate (PMA), respectively, markedly decreased DAX-1 expression, an event that was inversely correlated with StAR protein, StAR mRNA, and progesterone levels. Notably, the suppression of DAX-1 requires de novo transcription and translation, suggesting that the effect of DAX-1 in regulating StAR expression is dynamic. Chromatin immunoprecipitation studies revealed the association of DAX-1 with the proximal but not the distal region of the StAR promoter, and both (Bu)2cAMP and PMA decreased in vivo DAX-1-DNA interactions. EMSA and reporter gene analyses demonstrated the functional integrity of this interaction by showing that DAX-1 binds to a DNA hairpin at position -44/-20 bp of the mouse StAR promoter and that the binding of DAX-1 to this region decreases progesterone synthesis by impairing transcription of the StAR gene. In support of this, targeted silencing of endogenous DAX-1 elevated basal, (Bu)2cAMP-, and PMA-stimulated StAR expression and progesterone synthesis. Transrepression of the StAR gene by DAX-1 was tightly associated with expression of the nuclear receptors Nur77 and steroidogenic factor-1, demonstrating these factors negatively modulate the steroidogenic response. These findings provide insight into the molecular events by which DAX-1 influences the PKA and PKC signaling pathways involved in the regulation of the StAR protein and steroidogenesis in mouse Leydig tumor cells.