Youngchul Byun
Pohang University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youngchul Byun.
Chemosphere | 2008
Youngchul Byun; Kyung Bo Ko; Moo-Hyun Cho; Won Namkung; Dong Nam Shin; Jin Wook Lee; Dong Jun Koh; Kyoung Tae Kim
The oxidation of gas phase elemental mercury (Hg0) by atmospheric pressure non-thermal plasma has been investigated at room temperature, employing both dielectric barrier discharge (DBD) of the gas mixture of Hg0 and injection of ozone (O3) into the gas mixture of Hg0. Results have shown that the oxidative efficiencies of Hg0 by DBD and the injection of O3 are 59% and 93%, respectively, with energy consumption of 23.7 J L(-1). This combined approach has indicated that O3 plays a decisive role in the oxidation of gas phase Hg0. Also the oxidation of Hg0 by injecting O3 into the gas mixture of Hg0 proceeds with better efficiency than DBD of the gas mixture of Hg0. These results have been explained by the incorporation of the competitive reaction pathways between the formation of HgO by O3 and the decomposition of HgO back to Hg0 in the plasma environment.
Chemosphere | 2008
Kyung Bo Ko; Youngchul Byun; Moo-Hyun Cho; Won Namkung; Dong Nam Shin; Dong Jun Koh; Kyoung Tae Kim
The influence of HCl on the oxidation of gaseous elemental mercury (Hg0) has been investigated using a dielectric barrier discharge (DBD) plasma process, where the temperature of the plasma reactor and the composition of gas mixtures of HCl, H2O, NO, and O2 in N2 balance have been varied. We observe that Cl atoms and Cl2 molecules, created by the DBD process, play important roles in the oxidation of Hg0 to HgCl2. The addition of H2O to the gas mixture of HCl in N2 accelerates the oxidation of Hg0, although no appreciable effect of H2O alone on the oxidation of Hg0 has been observed. The increase of the reaction temperature in the presence of HCl results in the reduction of Hg0 oxidation efficiency probably due to the deterioration of the heterogeneous chemical reaction of Hg0 with chlorinated species on the reactor wall. The presence of NO shows an inhibitory effect on the oxidation of Hg0 under DBD of 16% O2 in N2, indicating that NO acts as an O and O3 scavenger. At the composition of Hg0 (280 microg m(-3)), HCl (25 ppm), NO (204 ppm), O2 (16%) and N2 (balance) and temperature 90 degrees C, we obtain the nearly complete oxidation of Hg0 at a specific energy density of 8 J l(-1). These results lead us to suggest that the DBD process can be viable for the treatment of mercury released from coal-fired power plants.
Environmental Science & Technology | 2010
Youngchul Byun; Won Namkung; Moo-Hyun Cho; Jae Woo Chung; Young-Suk Kim; Jin-Ho Lee; Carg-Ro Lee; Soon-Mo Hwang
Thermal plasma treatment has been regarded as a viable alternative for the treatment of highly toxic wastes, such as incinerator residues, radioactive wastes, and medical wastes. Therefore, a gasification/vitrification unit for the direct treatment of municipal solid waste (MSW), with a capacity of 10 tons/day, was developed using an integrated furnace equipped with two nontransferred thermal plasma torches. The overall process, as well as the analysis of byproducts and energy balance, has been presented in this paper to assess the performance of this technology. It was successfully demonstrated that the thermal plasma process converted MSW into innocuous slag, with much lower levels of environmental air pollutant emissions and the syngas having a utility value as energy sources (287 Nm3/MSW-ton for H2 and 395 Nm3/MSW-ton for CO), using 1.14 MWh/MSW-ton of electricity (thermal plasma torch (0.817 MWh/MSW-ton)+utilities (0.322 MWh/MSW-ton)) and 7.37 Nm3/MSW-ton of liquefied petroleum gas.
Chemosphere | 2011
Youngchul Byun; Dong Jun Koh; Dong Nam Shin
The removal mechanism of elementary mercury (Hg(0)) by non-thermal plasma (NTP) has been investigated, where dielectric barrier discharge and O(3) injection methods as oxidation techniques are employed, together with the analysis of mercury species deposited on the reactor surface using temperature-programmed desorption and dissociation (TPDD) and scanning electron microscopy-energy dispersive spectroscopy. The removal of Hg(0) by NTP is found to be time-dependent and proceed through three domains; the Hg(0) concentration just slightly decreases as soon as NTP is initiated and then becomes constant for several minutes (Region 1), thereafter starts to decrease rapidly for 1h (Region 2) and, after passing fall-off region, very slowly decreases for about 4h (Region 3). The deposited mercury species on the reactor surface were conglomerated like islands, rather than dispersed uniformly, and their ratio of Hg(0) to O composition is observed to be 1:2. Additionally, the new peak in TPDD spectra observed in the region of 260-380°C is proposed as HgO(3). These results lead us to conclude that the deposited mercury species by NTP have extra O atoms to oxidize the adsorbed Hg(0), resulting in the acceleration of removal rate as the oxidation of Hg(0) proceeds.
Journal of Hazardous Materials | 2011
Youngchul Byun; Moo-Hyun Cho; Jae Woo Chung; Won Namkung; Hyeon Don Lee; Sung Duk Jang; Young-Suk Kim; Jin-Ho Lee; Carg-Ro Lee; Soon-Mo Hwang
Thermal plasma gasification has been demonstrated as one of the most effective and environmentally friendly methods for solid waste treatment and energy utilization in many of studies. Therefore, the thermal plasma process of solid waste gasification (paper mill waste, 1.2 ton/day) was applied for the recovery of high purity H(2) (>99.99%). Gases emitted from a gasification furnace equipped with a nontransferred thermal plasma torch were purified using a bag-filter and wet scrubber. Thereafter, the gases, which contained syngas (CO+H(2)), were introduced into a H(2) recovery system, consisting largely of a water gas shift (WGS) unit for the conversion of CO to H(2) and a pressure swing adsorption (PSA) unit for the separation and purification of H(2). It was successfully demonstrated that the thermal plasma process of solid waste gasification, combined with the WGS and PSA, produced high purity H(2) (20 N m(3)/h (400 H(2)-Nm(3)/PMW-ton), up to 99.99%) using a plasma torch with 1.6 MWh/PMW-ton of electricity. The results presented here suggest that the thermal plasma process of solid waste gasification for the production of high purity H(2) may provide a new approach as a future energy infrastructure based on H(2).
Applied Physics Letters | 2008
Kyung Bo Ko; Youngchul Byun; Moo-Hyun Cho; Won Namkung; I. P. Hamilton; Dong Nam Shin; Dong Jun Koh; Kyoung Tae Kim
Positive pulsed corona discharge has been applied for the oxidation of gaseous elemental mercury (Hg{sup O} from a simulated flue gas. The oxidation of Hg{sup 0} to Hg{sup O} and HgCl{sub 2} can significantly enhance the mercury removal from flue gas. At a gas condition of O{sub 2} (10%), H{sub 2}O (3%), and N{sub 2} (balance), Hg{sup 0} oxidation efficiency of 84% was achieved at an input energy density of 45 J/l. The presence of NO, however, hinders Hg{sup 0} oxidation due to the preferential reaction of NO with O and O{sub 3}. On the contrary, SO{sub 2} shows little effect on Hg{sup 0} oxidation due to its preferential reaction with OH. It has been also observed that the HCl in gas stream can be dissociated to Cl and Cl{sub 2} and can induce additional Hg{sup 0} oxidation to HgCl{sub 2}.
Environmental Science & Technology | 2010
Youngchul Byun; Moo-Hyun Cho; Won Namkung; Kiman Lee; Dong Jun Koh; Dong Nam Shin
This work investigated the oxidation chemistry of elemental mercury (Hg(0)) by chlorine-containing species produced indirectly through the gas-to-solid phase reaction between NO(x) gases and NaClO(2) powder (NaClO(2)(s)), where both experiment and simulation results were compared to clarify which species are responsible for the oxidation of Hg(0). At first, we introduced 30 ppm of NO(2) into the pack-bed reactor containing NaClO(2)(s) to produce OClO species and then injected NO and Hg(0) (260 microg/Nm(3)) to Mixer, where the concentration of NO was varied up to 180 ppm and the reaction temperature was set to 130 degrees C. We observed for the first time that the degree of Hg(0) oxidation is completely controlled by the introduced concentration of NO: for example, the oxidation efficiency of Hg(0) is drastically increased to become 100% at near 7 ppm NO, but further increasing NO concentration results in the oxidation efficiency of Hg(0) being gradually decreased. The simulation results indicated that such a propensity of Hg(0) oxidation efficiency to NO concentration can be attributed to the NO concentration-dependent Cl, ClO, and Cl(2) formation which plays a critical role in the oxidation of Hg(0).
Archive | 2012
Youngchul Byun; Moo-Hyun Cho; Soon-Mo Hwang; Jae-Woo Chung
Rapid economic development has led to an annual increase in municipal solid waste (MSW) production. According to the US Environmental Protection Agency (US EPA), MSW generation has increased by a factor of 2.6 since 1960 [1]. The US EPA endorsed the concept of integrated waste management that could be tailored to fit particular community’s needs. Sustainable and successful treatment of MSW should be safe, effective, and environmentally friendly. The primary components of the philosophy are (a) source reduction including reuse of products and on-site composting of yard trimmings, (b) recycling, including off-site (or community) composting, (c) combustion with energy recovery, and (d) disposal through landfill. Among them, landfill has been the practice most widely adopted. There are two main drawbacks of landfill. One is that surrounding areas of landfills are often heavily polluted since it is difficult to keep dangerous chemicals from leaching out into the surrounding land [2]. The other is that landfill can increase chances of global warming by releasing CH4, which is 20 times more dangerous as a greenhouse gas than CO2. Therefore, we must find a more environmentally friendly alternative to treat MSW.
Chemosphere | 2011
Youngchul Byun; Dong Jun Koh; Dong Nam Shin; Moo-Hyun Cho; Won Namkung
The effect of polarity on the oxidation of Hg(0) was examined in the presence of O(2) via a pulsed corona discharge (PCD). The experimental result showed no difference in the energy yield of Hg(0) oxidation at both positive and negative PCDs (∼8 μg Hg Wh(-1) at following conditions: total flow rate=2 L min(-1) (Hg(0)=50 μg Nm(-3), O(2)=10%, and N(2) balance), temperature=150°C, and specific energy density=5-15 Wh Nm(-3)). This suggests that the positive PCD process used to control gaseous air pollutants may play an essential key role in Hg(0) oxidation because it consumes enough energy (∼15 Wh Nm(-3)) but an electrical precipitator could not because it consumes less energy (∼0.3 Wh Nm(-3)) to oxidize Hg(0).
Angewandte Chemie | 2015
Jun Kyu Lee; Jiho Shin; Nak Ho Ahn; Alessandro Turrina; Min Bum Park; Youngchul Byun; Sung June Cho; Paul A. Wright; Suk Bong Hong
Organic structure-directing agents (OSDAs), such as quaternary ammonium cations and amines, used in the synthesis of zeolites and related crystalline microporous oxides usually end up entrapped inside the void spaces of the crystallized inorganic host lattice. But none of them is known to form direct chemical bonds to the framework of these industrially important catalysts and adsorbents. We demonstrate that ECR-40, currently regarded as a typical silicoaluminophosphate molecular sieve, constitutes instead a new family of inorganic-organic hybrid networks in which the OSDAs are covalently bonded to the inorganic framework. ECR-40 crystallization begins with the formation of an Al-OSDA complex in the liquid phase in which the Al is octahedrally coordinated. This unit is incorporated in the crystallizing ECR-40. Subsequent removal of framework-bound OSDAs generates Al-O-Al linkages in a fully tetrahedrally coordinated framework.