Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Younghee Lee is active.

Publication


Featured researches published by Younghee Lee.


Biochemical and Biophysical Research Communications | 2009

Immunostimulation and anti-DNA antibody production by backbone modified CpG-DNA.

Dongbum Kim; Jae Won Rhee; Sanghoon Kwon; Wern Joo Sohn; Younghee Lee; Dae-Won Kim; Doo Sik Kim; Hyung Joo Kwon

Oligodeoxynucleotides containing immunostimulatory CpG motifs (CpG-DNA) have gained attention as potentially useful therapeutics. However, the phosphorothioate-modified CpG-DNAs (PS-ODN) can induce backbone-related side effects. Here, we compared the immunostimulatory activity of natural phosphodiester CpG-DNA (PO-ODN) from Mycobacterium bovis and PS-ODN in mice. Both PO-ODN and PS-ODN induced production of IL-12. PS-ODN increased spleen weights, spleen cell numbers, and the migration of macrophages into the peritoneal cavity in the mice in a CG sequence-dependent manner. PS-ODN induced anti-PS-ODN antibody production in the mice, and the PS-ODN-specific IgM was cross-reactive with other PS-ODNs in a CG sequence-independent manner. In contrast, PO-ODN did not affect on spleen weights, cell numbers, or IgM production. These results may provide an explanation for the side effects in immunotherapeutic application of PS-ODN. They also suggest that PO-ODN may be more optimal than PS-ODN to enhance innate immune responses without severe side effects.


BMC Biology | 2010

ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function

Sanghoon Kwon; Dongbum Kim; Jae Won Rhee; Jeong-A Park; Dae-Won Kim; Doo-Sik Kim; Younghee Lee; Hyung-Joo Kwon

BackgroundThe ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9).ResultsWe found that a variant of ASB9 that lacks the SOCS box (ASB9ΔSOCS) was naturally detected in human cell lines but not in peripheral blood mononuclear cells or normal hepatocytes. We also identified ubiquitous mitochondrial creatine kinase (uMtCK) as a new target of ASB9 in human embryonic kidney 293 (HEK293) cells. The ankyrin repeat domains of ASB9 can associate with the substrate binding site of uMtCK in a SOCS box-independent manner. The overexpression of ASB9, but not ASB9ΔSOCS, induces ubiquitination of uMtCK. ASB9 and ASB9ΔSOCS can interact and colocalise with uMtCK in the mitochondria. However, only expression of ASB9 induced abnormal mitochondrial structure and a decrease of mitochondrial membrane potential. Furthermore, the creatine kinase activities and cell growth were significantly reduced by ASB9 but not by ASB9ΔSOCS.ConclusionsASB9 interacts with the creatine kinase system and negatively regulates cell growth. The differential expression and function of ASB9 and ASB9ΔSOCS may be a key factor in the growth of human cell lines and primary cells.


BMC Immunology | 2011

Production of antibodies with peptide-CpG-DNA-liposome complex without carriers

Dongbum Kim; Sanghoon Kwon; Jae Won Rhee; Kwang Dong Kim; Young-Eun Kim; Cheung-Seog Park; Myeong Jun Choi; Jun-Gyo Suh; Doo-Sik Kim; Younghee Lee; Hyung-Joo Kwon

BackgroundThe screening of peptide-based epitopes has been studied extensively for the purpose of developing therapeutic antibodies and prophylactic vaccines that can be potentially useful for treating cancer and infectious diseases such as influenza virus, malaria, hepatitis B, and HIV. To improve the efficacy of antibody production by epitope-based immunization, researchers evaluated liposomes as a means of delivering vaccines; they also formulated adjuvants such as flagella and CpG-DNA to enhance the magnitude of immune responses. Here, we provide a potent method for peptide-based epitope screening and antibody production without conventional carriers.ResultsWe present that a particular form of natural phosphodiester bond CpG-DNA encapsulated in a specific liposome complex (Lipoplex(O)) induces potent immunomodulatory activity in humans as well as in mice. Additionally, Lipoplex(O) enhances the production of IgG2a specific to antigenic protein in mice. Most importantly, immunization of mice with several peptides co-encapsulated with Lipoplex(O) without carriers significantly induces each peptide-specific IgG2a production in a TLR9-dependent manner. A peptide-specific monoclonal antibody produced against hepatocellular carcinoma-associated antigen has functional effects on the cancer cells.ConclusionsOur overall results show that Lipoplex(O) is a potent adjuvant and that complexes of peptide and Lipoplex(O) are extremely useful for B cell epitope screening and antibody production without carriers. Therefore, our strategy may be promptly used for the development of therapeutic antibodies by rapid screening of potent B cell epitopes.


PLOS ONE | 2012

Prevention and therapy of hepatocellular carcinoma by vaccination with TM4SF5 epitope-CpG-DNA-liposome complex without carriers.

Sanghoon Kwon; Dongbum Kim; Byoung Kwon Park; S. Cho; Kwang Dong Kim; Young-Eun Kim; Cheung-Seog Park; Hyun-Jong Ahn; Jae-Nam Seo; Kyung-Chan Choi; Doo-Sik Kim; Younghee Lee; Hyung-Joo Kwon

Although peptide vaccines have been actively studied in various animal models, their efficacy in treatment is limited. To improve the efficacy of peptide vaccines, we previously formulated an efficacious peptide vaccine without carriers using the natural phosphodiester bond CpG-DNA and a special liposome complex (Lipoplex(O)). Here, we show that immunization of mice with a complex consisting of peptide and Lipoplex(O) without carriers significantly induces peptide-specific IgG2a production in a CD4+ cells- and Th1 differentiation-dependent manner. The transmembrane 4 superfamily member 5 protein (TM4SF5) has gained attention as a target for hepatocellular carcinoma (HCC) therapy because it induces uncontrolled growth of human HCC cells via the loss of contact inhibition. Monoclonal antibodies specific to an epitope of human TM4SF5 (hTM4SF5R2-3) can recognize native mouse TM4SF5 and induce functional effects on mouse cancer cells. Pre-immunization with a complex of the hTM4SF5R2-3 epitope and Lipoplex(O) had prophylactic effects against tumor formation by HCC cells implanted in an mouse tumor model. Furthermore, therapeutic effects were revealed regarding the growth of HCC when the vaccine was injected into mice after tumor formation. These results suggest that our improved peptide vaccine technology provides a novel prophylaxis measure as well as therapy for HCC patients with TM4SF5-positive tumors.


Biochemical and Biophysical Research Communications | 2009

Expression of human β-defensin-2 gene induced by CpG-DNA in human B cells

Su Ho Han; Young-Eun Kim; Jeong-A Park; Jae-Bong Park; Yong-Sun Kim; Younghee Lee; Ihn-Geun Choi; Hyung-Joo Kwon

Defensins have a broad range of antimicrobial activity against bacteria, fungi, and viruses. The expression of human beta-defensin-2 (hBD-2) is prevalently observed in epithelial cells and is induced by bacterial infection. Here, we have shown that the expression of the hBD-2 gene and release of hBD-2 protein into the medium is up-regulated in response to CpG-DNA in human B cell line RPMI 8226. The induction of hBD-2 was dependent on CG sequence and phosphorothioate backbone-modification. This was also confirmed in primary human lymphocytes. To shed light on the molecular mechanism involved in hBD-2 induction by CpG-DNA, we examined the contribution of the NF-kappaB signaling pathway in RPMI 8226 cells. Suppression of MyD88 function and inhibition of NF-kappaB nuclear localization blocked hBD-2 induction. The NF-kappaB pathway inhibitors also abolished hBD-2 induction. These results may contribute to a better understanding on the therapeutic effects of CpG-DNA against infectious diseases.


Cancer Research | 2014

Monoclonal Antibody Targeting of the Cell Surface Molecule TM4SF5 Inhibits the Growth of Hepatocellular Carcinoma

Sang-Hoon Kwon; Kyung-Chan Choi; Young-Eun Kim; Yang-Wha Ha; Dongbum Kim; Byoung Kwon Park; Guang Wu; Doo-Sik Kim; Younghee Lee; Hyung-Joo Kwon

The cell surface transmembrane receptor TM4SF5 has been implicated in hepatocellular carcinoma (HCC), but its candidacy as a therapeutic target has not been evaluated. Building on findings that immunization with a peptide vaccine targeting human TM4SF5 can exert prophylactic and therapeutic effects in a murine model of HCC, we developed a monoclonal antibody to characterize expression of TM4SF5 in HCC and to target its function there as an anticancer strategy. We found that the antibody modulated cell signaling in HCC cells in vitro, reducing cell motility, modulating E-cadherin expression, altering p27(kip1) localization, and increasing RhoA activity. Using a mouse xenograft model of human HCC, we documented the in vivo efficacy of the antibody, which suppressed tumor growth in either tumor prevention or treatment designs. Our work offers a preclinical proof of concept for TM4SF5 as a promising target for antibody therapeutics to treat HCC. Cancer Res; 74(14); 3844-56. ©2014 AACR.


Oncology Reports | 2013

Induction of immunological memory response by vaccination with TM4SF5 epitope-CpG-DNA-liposome complex in a mouse hepatocellular carcinoma model.

Sanghoon Kwon; Dongbum Kim; Byoung Kwon Park; Guang Wu; Min Chul Park; Yang-Wha Ha; Hyung-Joo Kwon; Younghee Lee

The innovation of a peptide vaccine strategy may contribute to the development of efficacious and convenient cancer vaccines. Recently, we formulated an efficacious peptide vaccine without carriers using the natural phosphodiester bond CpG-DNA and a special liposome complex [Lipoplex(O)]. The peptide vaccine targeting a tumor antigen, transmembrane 4 superfamily member 5 protein (TM4SF5), was confirmed to have preventive and therapeutic effects in a mouse hepatocellular carcinoma (HCC) model. In this study, we demonstrated that the isotype-switched (IgM(-)IgD(-)) B cell population increased after immunization and that the functional memory response persisted for at least 70 days after the final immunization of mice. Delayed implantation of BNL-HCC cells significantly induced the peptide-specific IgG2a production in the immunized mice. Accordingly, tumor growth was inhibited and the survival rate increased. These results suggest that our peptide vaccine induces memory response, which is essential for cancer vaccine application.


Biochemical and Biophysical Research Communications | 2013

Prophylactic effect of a peptide vaccine targeting TM4SF5 against colon cancer in a mouse model

Sanghoon Kwon; Young-Eun Kim; Dongbum Kim; Byoung Kwon Park; Guang Wu; Te Ha Kim; Song Hee Choi; Doo-Sik Kim; Hyung-Joo Kwon; Younghee Lee

Expression of transmembrane 4 superfamily member 5 protein (TM4SF5) was implicated in hepatocellular carcinoma (HCC) and colon cancer. Previously, we have shown that immunization with TM4SF5 peptide-CpG-DNA-liposome complex induces production of TM4SF5-specific antibodies and protects mice from HCC progression in an allograft model. Here, we confirmed expression of TM4SF5 in the mouse colon cancer cell line CT-26 and found that anti-TM4SF5 antibody inhibits growth of CT-26 cells. We then immunized mice with TM4SF5 peptide-CpG-DNA-liposome complex and transplanted CT-26 cells to investigate the vaccination effects. Robust production of TM4SF5-specific antibodies was induced by challenge with CT-26 cells and the tumor growth was significantly suppressed in the immunized mice. The peptide vaccine targeting TM4SF5 consequently showed a prophylactic effect against colon cancer development in a mouse model. These results suggest that the peptide vaccine can be potentially applied in humans to treat colon cancer.


Molecular Immunology | 2011

Novel immunostimulatory phosphodiester oligodeoxynucleotides with CpT sequences instead of CpG motifs

Dongbum Kim; Jinwon Jung; Younghee Lee; Hyung-Joo Kwon

The innate immune system recognizes bacterial DNA as a nonself to induce rapid immune activation. TLR9 recognizes synthetic oligodeoxynucleotides (ODNs) and bacterial DNA containing unmethylated CpG dinucleotides in the context of specific base sequences (CpG-DNA). Here, we demonstrate that phosphorothioate backbone CT-ODN (PS-CT-ODN), a derivative of phosphorothioate backbone CpG-DNA (PS-ODN) with CT sequences substituted for the CG sequences, stimulates IL-8 promoter activation and gene expression. Furthermore, we identified an immunostimulatory phosphodiester bond CT-ODN (PO-CT-ODN) from Staphylococcus aureus chromosomal DNA and found that the PO-CT-ODN induces cytokine production in a TLR9-dependent manner when encapsulated with a proper liposome. Our experimental analyses also demonstrate that the immunostimulatory PO-CT-ODN can act as an adjuvant for the induction of Ag-driven IgG production. Further investigation of the functional role of PO-CT-ODN may support the future application of PO-CT-ODN in immunotherapeutics.


Redox biology | 2017

Proteasome inhibitor-induced cleavage of HSP90 is mediated by ROS generation and caspase 10-activation in human leukemic cells

Sangkyu Park; Jeong-A Park; Hwanmin Yoo; Han-Bum Park; Younghee Lee

Heat shock protein 90 (HSP90) is a molecular chaperone that supports the stability of client proteins. The proteasome is one of the targets for cancer therapy, and studies are underway to use proteasome inhibitors as anti-cancer drugs. In this study, we found that HSP90 was cleaved to a 55 kDa protein after treatment with proteasome inhibitors including MG132 in leukemia cells but was not cleaved in other tissue-derived cells. HSP90 has two major isoforms (HSP90α and HSP90β), and both were cleaved by MG132 treatment. MG132 treatment also induced a decrease in HSP90 client proteins. MG132 treatment generated ROS, and the cleavage of HSP90 was blocked by a ROS scavenger, N-acetylcysteine (NAC). MG132 activated several caspases, and the activation was reduced by pretreatment with NAC. Based on an inhibitor study, the cleavage of HSP90 induced by MG132 was dependent on caspase 10 activation. Furthermore, active recombinant caspase 10 induced HSP90 cleavage in vitro. MG132 upregulated VDUP-1 expression and reduced the GSH levels implying that the regulation of redox-related proteins is involved. Taken all together, our results suggest that the cleavage of HSP90 by MG132 treatment is mediated by ROS generation and caspase 10 activation. HSP90 cleavage may provide an additional mechanism involved in the anti-cancer effects of proteasome inhibitors.

Collaboration


Dive into the Younghee Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge