Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youngjun Ju is active.

Publication


Featured researches published by Youngjun Ju.


Antioxidants & Redox Signaling | 2013

Hydrogen Sulfide Protects Against Cellular Senescence via S-Sulfhydration of Keap1 and Activation of Nrf2

Guangdong Yang; Kexin Zhao; Youngjun Ju; Sarathi Mani; Qiuhui Cao; Stephanie Puukila; Neelam Khaper; Lingyun Wu; Rui Wang

AIMS H2S, a third member of gasotransmitter family along with nitric oxide and carbon monoxide, exerts a wide range of cellular and molecular actions in our body. Cystathionine gamma-lyase (CSE) is a major H2S-generating enzyme in our body. Aging at the cellular level, known as cellular senescence, can result from increases in oxidative stress. The aim of this study was to investigate how H2S attenuates oxidative stress and delays cellular senescence. RESULTS Here we showed that mouse embryonic fibroblasts isolated from CSE knockout mice (CSE KO-MEFs) display increased oxidative stress and accelerated cellular senescence in comparison with MEFs from wild-type mice (WT-MEFs). The protein expression of p53 and p21 was significantly increased in KO-MEFs, and knockdown of p53 or p21 reversed CSE deficiency-induced senescence. Incubation of the cells with NaHS (a H2S donor) significantly increased the glutathione (GSH) level and rescued KO-MEFs from senescence. Nrf2 is a master regulator of the antioxidant response, and Keap1 acts as a negative regulator of Nrf2. NaHS S-sulfhydrated Keap1 at cysteine-151, induced Nrf2 dissociation from Keap1, enhanced Nrf2 nuclear translocation, and stimulated mRNA expression of Nrf2-targeted downstream genes, such as glutamate-cysteine ligase and GSH reductase. INNOVATION These results provide a mechanistic insight into how H2S signaling mediates cellular senescence induced by oxidative stress. CONCLUSION H2S protects against cellular aging via S-sulfhydration of Keap1 and Nrf2 activation in association with oxidative stress.


Science Signaling | 2014

The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide

Zaid Altaany; Youngjun Ju; Guangdong Yang; Rui Wang

S-Sulfhydration increases the activity of endothelial nitric oxide synthase, an enzyme important in vasodilation. Regulating the Production of NO Blood vessels relax and blood flow increases when the enzyme eNOS produces nitric oxide (NO) in the endothelial cells that line blood vessels. The activity of eNOS is affected by modifications to specific sites in the enzyme, such as S-sulfhydration, a process that is triggered by the gas hydrogen sulfide (H2S). Altaany et al. found that S-sulfhydration of eNOS affected other modifications to the enzyme, increasing eNOS activity. Endothelial cells from mice that could not produce H2S produced less NO than those from normal mice. Enhancing the S-sulfhydration of eNOS may be an effective strategy to increase blood flow in patients. The gasotransmitter hydrogen sulfide (H2S), which is generated by cystathionine γ-lyase (CSE), signals by modifying proteins through S-sulfhydration and potentially other mechanisms. A target protein for H2S is endothelial nitric oxide synthase (eNOS), an enzyme that generates nitric oxide (NO), which causes vasodilation. We investigated whether H2S-induced S-sulfhydration affected the S-nitrosylation and phosphorylation of eNOS and the functional effects of changes in these posttranslational modifications on eNOS activity. In vitro, different NO donors induced the S-nitrosylation of eNOS without affecting its S-sulfhydration, whereas the H2S donor sodium hydrosulfide (NaHS) decreased the S-nitrosylation of eNOS. Cys443 was the primary S-sulfhydration site in eNOS and was one site that could be S-nitrosylated. Phosphorylation increases eNOS activity. Although exposure of eNOS-expressing HEK-293 cells to NaHS or vascular endothelial growth factor (VEGF) triggered the phosphorylation of wild-type and C443G-eNOS, VEGF did not affect the S-sulfhydration of eNOS and a mutant of eNOS that could not be phosphorylated was still S-sulfhydrated. eNOS can be present in cells in monomeric or dimeric form, but only eNOS dimers produce NO. In wild-type mice, eNOS proteins were predominantly dimerized, whereas eNOS from CSE-knockout (KO) mice, S-nitrosylated eNOS, and heterologously expressed C443G-eNOS was mostly monomeric. Accordingly, basal production of NO was lower in CSE-KO endothelial cells than in wild-type endothelial cells. Our data suggest that H2S increases eNOS activity by inducing the S-sulfhydration of eNOS, promoting its phosphorylation, inhibiting its S-nitrosylation, and increasing eNOS dimerization, whereas NO decreases eNOS activity by promoting the formation of eNOS monomers.


Antioxidants & Redox Signaling | 2013

H2S Is an Endothelium-Derived Hyperpolarizing Factor

Guanghua Tang; Guangdong Yang; Bo Jiang; Youngjun Ju; Lingyun Wu; Rui Wang

AIMS Endothelium-dependent vasorelaxation is mediated by endothelium-derived relaxing factor and endothelium-derived hyperpolarizing factor (EDHF). However, the molecular entity of EDHF remains unclear. The present study examined whether hydrogen sulfide (H₂S) acts as EDHF and how H₂S mediates EDHF pathways from endothelial origination to downstream target of smooth muscle cells (SMCs). RESULTS We found that knocking-out the expression of cystathionine γ-lyase (CSE) in mice (CSE-knockout [KO]) elevated resting-membrane-potential of SMCs and eliminated methacholine-induced endothelium-dependent relaxation of mesenteric arteries, but not that of aorta. Methacholine, a cholinergic-muscarinic agonist, hyperpolarized SMC in endothelium-intact mesenteric arteries from wide-type mice. This effect was inhibited by muscarinic antagonist (atropine) or the co-application of charybdotoxin and apamin, which blocked intermediate- and small-conductance KCa (IKCa and SKCa) channels, or abolished in CSE-KO mice. Supplementation of exogenous H₂S hyperpolarized vascular SMCs and endothelial cells from wide-type and CSE-KO mice. Both methacholine and H₂S induced greater SMC hyperpolarization of female wide-type mesenteric arteries than that of male ones. H2S-induced hyperpolarization is blocked by -SH oxidants and -SSH inhibitor. The expression of SK2.3 but not IK3.1 channel in vascular tissues was increased by H₂S and decreased by CSE inhibitor or CSE gene KO. INNOVATION AND CONCLUSIONS Taken together, H₂S is an EDHF. The identification of H2S as an EDHF will not only solve one of the long-lasting perplexing puzzles for the mechanisms underlying endothelium-dependent vasorelaxation, but also shed light on potential therapeutic effects of H₂S on pathological abnormalities in peripheral resistance arteries.


EMBO Reports | 2014

S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair

Kexin Zhao; Youngjun Ju; Shuangshuang Li; Zaid Altaany; Rui Wang; Guangdong Yang

The repair of DNA damage is fundamental to normal cell development and replication. Hydrogen sulfide (H2S) is a novel gasotransmitter that has been reported to protect cellular aging. Here, we show that H2S attenuates DNA damage in human endothelial cells and fibroblasts by S‐sulfhydrating MEK1 at cysteine 341, which leads to PARP‐1 activation. H2S‐induced MEK1 S‐sulfhydration facilitates the translocation of phosphorylated ERK1/2 into nucleus, where it activates PARP‐1 through direct interaction. Mutation of MEK1 cysteine 341 inhibits ERK phosphorylation and PARP‐1 activation. In the presence of H2S, activated PARP‐1 recruits XRCC1 and DNA ligase III to DNA breaks to mediate DNA damage repair, and cells are protected from senescence.


Endocrinology | 2013

Hydrogen Sulfide Impairs Glucose Utilization and Increases Gluconeogenesis in Hepatocytes

Ling Zhang; Guangdong Yang; Ashley A. Untereiner; Youngjun Ju; Lingyun Wu; Rui Wang

Mounting evidence has established hydrogen sulfide (H(2)S) as an important gasotransmitter with multifaceted physiological functions. The aim of the present study was to investigate the role of H(2)S on glucose utilization, glycogen synthesis, as well as gluconeogenesis in both HepG(2) cells and primary mouse hepatocytes. Incubation with NaHS (a H(2)S donor) impaired glucose uptake and glycogen storage in HepG(2) cells via decreasing glucokinase activity. Adenovirus-mediated cystathionine γ-lyase (CSE) overexpression increased endogenous H(2)S production and lowered glycogen content in HepG(2) cells. Glycogen content was significantly higher in liver tissues from CSE knockout (KO) mice compared to that from wild type (WT) mice in fed condition. Glucose consumption was less in primarily cultured hepatocytes isolated from WT mice than those from CSE KO mice, but more glucose was produced by hepatocytes via gluconeogenesis and glycogenolysis pathways in WT mice than in CSE KO mice. NaHS treatment reduced the phosphorylation of AMP-activated protein kinase, whereas stimulation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside reversed H(2)S-impaired glucose uptake. H(2)S-increased glucose production was likely through increased phosphoenolpyruvate carboxykinase activity. In addition, insulin at the physiological range inhibited CSE expression, and H(2)S decreased insulin-stimulated phosphorylation of Akt in HepG(2) cells. CSE expression was increased, however, in insulin-resistant state induced by exposing cells to high levels of insulin (500 nm) and glucose (33 mm) for 24 h. Taken together, these data suggest that the interaction of H(2)S and insulin in liver plays a pivotal role in regulating insulin sensitivity and glucose metabolism.


Biochimica et Biophysica Acta | 2015

H2S-induced S-sulfhydration of pyruvate carboxylase contributes to gluconeogenesis in liver cells

Youngjun Ju; Ashley A. Untereiner; Lingyun Wu; Guangdong Yang

BACKGROUND Cystathionine gamma-lyase (CSE)-derived hydrogen sulfide (H(2)S) possesses diverse roles in the liver, affecting lipoprotein synthesis, insulin sensitivity, and mitochondrial biogenesis. H(2)S S-sulfhydration is now proposed as a major mechanism for H(2)S-mediated signaling. Pyruvate carboxylase (PC) is an important enzyme for gluconeogenesis. S-sulfhydration regulation of PC by H(2)S and its implication in gluconeogenesis in the liver have been unknown. METHODS Gene expressions were analyzed by real-time PCR and western blotting, and protein S-sulfhydration was assessed by both modified biotin switch assay and tag switch assay. Glucose production and PC activity was measured with coupled enzyme assays, respectively. RESULTS Exogenously applied H(2)S stimulates PC activity and gluconeogenesis in both HepG2 cells and mouse primary liver cells. CSE overexpression enhanced but CSE knockout reduced PC activity and gluconeogenesis in liver cells, and blockage of PC activity abolished H(2)S-induced gluconeogenesis. H(2)S had no effect on the expressions of PC mRNA and protein, while H(2)S S-sulfhydrated PC in a dithiothreitol-sensitive way. PC S-sulfhydration was significantly strengthened by CSE overexpression but attenuated by CSE knockout, suggesting that H(2)S enhances glucose production through S-sulfhydrating PC. Mutation of cysteine 265 in human PC diminished H(2)S-induced PC S-sulfhydration and activity. In addition, high-fat diet feeding of mice decreased both CSE expression and PC S-sulfhydration in the liver, while glucose deprivation of HepG2 cells stimulated CSE expression. CONCLUSIONS CSE/H(2)S pathway plays an important role in the regulation of glucose production through S-sulfhydrating PC in the liver. GENERAL SIGNIFICANCE Tissue-specific regulation of CSE/H(2)S pathway might be a promising therapeutic target of diabetes and other metabolic syndromes.


Canadian Journal of Physiology and Pharmacology | 2013

H2S signaling in redox regulation of cellular functions1

Youngjun Ju; Weihua Zhang; Yanxi Pei; Guangdong Yang

Hydrogen sulfide (H(2)S) is traditionally recognized as a toxic gas with a rotten-egg smell. In just the last few decades, H(2)S has been found to be one of a family of gasotransmitters, together with nitric oxide and carbon monoxide, and various physiologic effects of H(2)S have been reported. Among the most acknowledged molecular mechanisms for the cellular effects of H(2)S is the regulation of intracellular redox homeostasis and post-translational modification of proteins through S-sulfhydration. On the one side, H(2)S can promote an antioxidant effect and is cytoprotective; on the other side, H(2)S stimulates oxidative stress and is cytotoxic. This review summarizes our current knowledge of the antioxidant versus pro-oxidant effects of H(2)S in mammalian cells and describes the Janus-faced properties of this novel gasotransmitter. The redox regulation for the cellular effects of H(2)S through S-sulfhydration and the role of H(2)S in glutathione generation is also recapitulated. A better understanding of H(2)S-regualted redox homeostasis will pave the way for future design of novel pharmacological and therapeutic interventions for various diseases.


Antioxidants & Redox Signaling | 2016

Decreased Gluconeogenesis in the Absence of Cystathionine Gamma-Lyase and the Underlying Mechanisms.

Ashley A. Untereiner; Rui Wang; Youngjun Ju; Lingyun Wu

AIMS To investigate the regulation of hepatic glucose production by cystathionine γ-lyase (CSE)-generated hydrogen sulfide (H2S) in hepatic glucose production under physiological conditions. RESULTS We found that CSE knockout (KO) mice had a reduced rate of gluconeogenesis, which was reversed by administration of NaHS (an H2S donor) (i.p.). Interestingly, isolated CSE KO hepatocytes exhibited a reduced glycemic response to chemical-induced activation of the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and glucocorticoid pathways compared with wild-type (WT) hepatocytes. Treatment with the inhibitors for PKA (KT5720) or glucocorticoid receptor (GR) (RU-486) significantly reduced H2S-stimulated glucose production from both WT and CSE KO mouse hepatocytes. NaHS treatment upregulated the protein levels of key gluconeogenic transcription factors, such as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and CCAAT-enhancer-binding protein-β (C/EBP-β). Moreover, exogenous H2S augmented the S-sulfhydration of the rate-limiting gluconeogenic enzymes and PGC-1α and increased their activities, which were lower in untreated CSE KO hepatocytes. Finally, knockdown of PGC-1α, but not C/EBP-β, significantly decreased NaHS-induced glucose production from the primary hepatocytes. INNOVATION This study demonstrates the stimulatory effect of endogenous H2S on liver glucose production and reveals three underlying mechanisms; that is, H2S upregulates the expression levels of PGC-1α and phosphoenolpyruvate carboxykinase via the GR pathway; H2S upregulates the expression level of PGC-1α through the activation of the cAMP/PKA pathway as well as PGC-1α activity via S-sulfhydration; and H2S upregulates the expression and the activities (by S-sulfhydration) of glucose-6-phosphatase and fructose-1,6-bisphosphatase. CONCLUSION This study may offer clues for the homeostatic regulation of glucose metabolism under physiological conditions and its dysregulation in metabolic syndrome.


Environmental Toxicology and Chemistry | 2010

Pulp and paper mill effluents induce distinct gene expression changes linked to androgenic and estrogenic responses in the fathead minnow (Pimephales promelas)

Julieta Werner; Jacob D. Ouellet; Caroline S. Cheng; Youngjun Ju; R. David Law

Although effluent treatment systems within pulp and paper mills remove many toxicants and improve wastewater quality, there is a need to understand and quantify the effectiveness of the treatment process. At a combined news and kraft pulp and paper mill in northwestern Ontario, Canada, fathead minnow (FHM) reproduction and physiology were examined before, during, and after a short-term (6-d) exposure to 10% (v/v) untreated kraft mill effluent (UTK), 25% (v/v) secondary treated kraft mill effluent (TK), and 100% (v/v) combined mill outfall (CMO). Although UTK exposure significantly decreased egg production, neither TK nor CMO caused any reproductive changes. The expression of six genes responsive to endocrine-disrupting compounds, stress, or metals was then examined in livers of these fish using real-time polymerase chain reaction. In female FHMs, none of the three effluents induced significant expression changes in any genes investigated. By contrast, in males there were significant increases in the mRNA levels of androgen receptor, estrogen receptor (ER) beta, and cytochrome P4501A (CYP1A) upon UTK and TK exposure but no changes in ERalpha or vitellogenin (VTG) gene expression, whereas CMO exposure significantly increased the mRNA levels of ERalpha, VTG, and CYP1A. Together, these results suggest that kraft effluent before and after biological treatment contained compounds able to induce androgenic effects in FHMs, and that combination of kraft and newsmill effluents eliminated the androgenic compounds while inducing distinct and significant patterns of gene expression changes that were likely due to estrogenic compounds produced by the newsmill.


Molecules | 2017

H2S-Mediated Protein S-Sulfhydration: A Prediction for Its Formation and Regulation

Youngjun Ju; Ming Fu; Eric Stokes; Lingyun Wu; Guangdong Yang

Protein S-sulfhydration is a newly discovered post-translational modification of specific cysteine residue(s) in target proteins, which is involved in a broad range of cellular functions and metabolic pathways. By changing local conformation and the final activity of target proteins, S-sulfhydration is believed to mediate most cellular responses initiated by H2S, a novel gasotransmitter. In comparison to protein S-sulfhydration, nitric oxide-mediated protein S-nitrosylation has been extensively investigated, including its formation, regulation, transfer and metabolism. Although the investigation on the regulatory mechanisms associated with protein S-sulfhydration is still in its infancy, accumulated evidence suggested that protein S-sulfhydration may share similar chemical features with protein S-nitrosylation. Glutathione persulfide acts as a major donor for protein S-sulfhydration. Here, we review the present knowledge on protein S-sulfhydration, and also predict its formation and regulation mechanisms based on the knowledge from protein S-nitrosylation.

Collaboration


Dive into the Youngjun Ju's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Jiang

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge