Youngjun Lee
Ulsan National Institute of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youngjun Lee.
Environmental Science & Technology | 2013
Sungwon Park; Seungmin Lee; Youngjun Lee; Yongwon Seo
In order to investigate the feasibility of semiclathrate hydrate-based precombustion CO2 capture, thermodynamic, kinetic, and spectroscopic studies were undertaken on the semiclathrate hydrates formed from a fuel gas mixture of H2 (60%) + CO2 (40%) in the presence of quaternary ammonium salts (QASs) such as tetra-n-butylammonium bromide (TBAB) and fluoride (TBAF). The inclusion of QASs demonstrated significantly stabilized hydrate dissociation conditions. This effect was greater for TBAF than TBAB. However, due to the presence of dodecahedral cages that are partially filled with water molecules, TBAF showed a relatively lower gas uptake than TBAB. From the stability condition measurements and compositional analyses, it was found that with only one step of semiclathrate hydrate formation with the fuel gas mixture from the IGCC plants, 95% CO2 can be enriched in the semiclathrate hydrate phase at room temperature. The enclathration of both CO2 and H2 in the cages of the QAS semiclathrate hydrates and the structural transition that results from the inclusion of QASs were confirmed through Raman and (1)H NMR measurements. The experimental results obtained in this study provide the physicochemical background required for understanding selective partitioning and distributions of guest gases in the QAS semiclathrate hydrates and for investigating the feasibility of a semiclathrate hydrate-based precombustion CO2 capture process.
Langmuir | 2011
Seungmin Lee; Sungmin Park; Youngjun Lee; Jaehyoung Lee; Huen Lee; Yongwon Seo
In this study, guest gas enclathration behavior in semiclathrates of tetra-n-butylammonium bromide (TBAB) was closely investigated through phase equilibrium measurement and spectroscopic analysis. The three-phase equilibria of semiclathrate (H), liquid water (L(W)), and vapor (V) for the ternary CH(4) + TBAB + water and CO(2) + TBAB + water mixtures with various TBAB concentrations were experimentally measured to determine the stability conditions of the double TBAB semiclathrates. Equilibrium dissociation temperatures for pure TBAB semiclathrate were also measured at the same concentrations under atmospheric conditions. The dissociation temperature and dissociation enthalpy of pure TBAB semiclathrate were confirmed by differential scanning calorimetry. The experimental results showed that the double CH(4) (or CO(2)) + TBAB semiclathrates yielded greatly enhanced thermal stability when compared with pure CH(4) (or CO(2)) hydrate. The highest stabilization effect was observed at the stoichiometric concentration of pure TBAB semiclathrate, which is 3.7 mol%. From the NMR and Raman spectroscopic studies, it was found that the guest gases (CH(4) and CO(2)) were enclathrated in the double semiclathrates. In particular, from the cage-dependent (13)C NMR chemical shift, it was confirmed that CH(4) molecules were captured in the 5(12) cages of the double semiclathrates.
Journal of Physical Chemistry B | 2012
Seungmin Lee; Youngjun Lee; Sungwon Park; Yunju Kim; Ju Dong Lee; Yongwon Seo
The precise nature and unique pattern of the double tetra-n-butylammonium fluoride (TBAF) semiclathrates with a guest gas (CH(4) or CO(2)) was closely investigated through thermodynamic and spectroscopic analyses. The three-phase equilibria of semiclathrate (H), liquid water (L(W)), and vapor (V) for the ternary CH(4) + TBAF + water and CO(2) + TBAF + water mixtures with various TBAF concentrations were experimentally measured in order to determine the stability conditions of the double TBAF semiclathrates. The double CH(4) (or CO(2)) + TBAF semiclathrates showed remarkably enhanced thermal stability when compared with pure CH(4) (or CO(2)) hydrate. The highest stabilization effect was observed at the stoichiometric concentration of pure TBAF semiclathrate, which is 3.3 mol %. Gas uptake measurements were undertaken in order to estimate the amount of gas consumed during double semiclathrate formation. CH(4) was found to be a relatively more favorable guest for the 5(12) cages of the double TBAF semiclathrate than CO(2). From the results of the NMR and Raman spectroscopic analyses it was identified that the guest gas molecules (CH(4) or CO(2)) were enclathrated in the 5(12) cages of the double TBAF semiclathrates. The overall results given in this study are useful for understanding the fundamental guest gas enclathration behavior in the double semiclathrates.
Journal of Physical Chemistry B | 2013
Youngjun Lee; Seungmin Lee; Sungwon Park; Yunju Kim; Jong-Won Lee; Yongwon Seo
The enclathration of 2-propanol (2-PrOH) as a co-guest of structure II (sII) hydrates in the presence of CH4 and CO2 was experimentally verified with a focus on macroscopic phase behaviors and microscopic analytical methods such as powder X-ray diffraction (PXRD) and NMR spectroscopy. 2-PrOH functioned as a hydrate promoter in the CH4 + 2-PrOH systems, whereas it functioned as an apparent hydrate inhibitor in the CO2 + 2-PrOH systems despite the inclusion of 2-PrOH in the hydrate lattices. From the PXRD patterns, both double CH4 + 2-PrOH and double CO2 + 2-PrOH hydrates were identified to be cubic (Fd3m) sII hydrates. From the (13)C NMR spectra, it was found that, at a lower 2-PrOH concentration, the small 5(12) cages of the sII hydrate were occupied by CH4 molecules only, whereas the large 5(12)6(4) cages were shared by CH4 and 2-PrOH molecules. However, at a stoichiometric concentration, the large cages were occupied by 2-PrOH molecules only, and the corresponding chemical formula for this concentration is 1.50CH4·0.98 2-PrOH·17H2O.
Journal of Physical Chemistry B | 2012
Seungmin Lee; Youngjun Lee; Sungwon Park; Yongwon Seo
Guest-induced structural transformation in amine semiclathrate hydrates is a unique pattern caused by modifying the hydrophobic-hydrophilic balance, and thus, it can be applied to potential gas storage and transportation areas. The experimental results of the structural transformation of isopropylamine (IPA) semiclathrate hydrates in the presence of methane (CH(4)) as a coguest are presented with a focus on the macroscopic phase behavior and microscopic analytical methods such as powder X-ray diffraction (PXRD) and NMR spectroscopy. The introduction of CH(4) molecules as coguests changed the structure of the IPA·8.0H(2)O semiclathrate hydrates (hexagonal, P6(3)/mmc) to sII gas hydrates (cubic, Fd3m). The microscopic analysis results indicate that the guest gas distribution and the clathrate hydrate composition can be altered with adjustment of the IPA concentration. The overall experimental results are valuable for increased understanding of the stability conditions, structural details, and guest-host interactions in hydrophobic guest gas + IPA clathrate hydrates.
International Journal of Greenhouse Gas Control | 2013
Sungwon Park; Seungmin Lee; Youngjun Lee; Yohan Lee; Yongwon Seo
Journal of Chemical & Engineering Data | 2010
Seungmin Lee; Youngjun Lee; Sungmin Park; Yongwon Seo
Chemical Engineering Journal | 2014
Youngjun Lee; Seungmin Lee; Young Keun Jin; Yongwon Seo
The Journal of Chemical Thermodynamics | 2013
Seungmin Lee; Youngjun Lee; Sungwon Park; Yunju Kim; Inuk Cha; Yongwon Seo
Korean Journal of Chemical Engineering | 2012
Seungmin Lee; Sungwon Park; Youngjun Lee; Yunju Kim; Ju Dong Lee; Jaehyoung Lee; Yongwon Seo