Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where ngmin You is active.

Publication


Featured researches published by ngmin You.


Dalton Transactions | 2009

Phosphorescent iridium(III) complexes: toward high phosphorescence quantum efficiency through ligand control

Youngmin You; Soo Young Park

Phosphorescent Ir(III) complexes attract enormous attention because they allow highly efficient electrophosphorescence. In pursuing the development of Ir(III) complexes during the last decade, significant progress has been made in terms of the colour-tunability, thermal- and photo-stability, phase homogeneity, and phosphorescence efficiency. By far, extensive synthetic efforts have been focused on the molecular design of ligands to achieve a wide range of phosphorescence colour that is compatible with organic light-emitting device (OLED) applications. In contrast, less has been known about a collective structure-property relationship for phosphorescence quantum efficiency. In fact, a few rule-of-thumbs for high phosphorescence quantum efficiency have been occasionally reported, but a collective rationale is yet to be investigated. In this article, we provide a comprehensive review of 8 different methods reported so far to achieve high phosphorescence quantum efficiency from Ir(III) complexes. The methods included herein are limited to the cases of intramolecular controls, and thus are discussed in terms of variations in ligand structures: (1) geometric isomer control, (2) rigid structure and restricted intramolecular motion, (3) larger mixing of 1MLCT and 3LC states, (4) de-stabilizing a thermally accessible non-emissive state, (5) introducing dendrimer structures, (6) control in substituents of ligands, (7) confining the phosphorescent region of a mixed ligand Ir(III) complex and (8) sensitized phosphorescence by using attached energy donors. Each method is closely related to intramolecular excited state interactions, which strongly affect radiative or non-radiative transitions. A comprehensive understanding of these methods leads us to conclude that the modulation in ligand structures has a profound effect on both the phosphorescence colour and phosphorescence quantum efficiency. Thus, the judicious selection of ligand structures and their chelate disposition should be considered before synthesis. We expect that the guidelines for attaining a high phosphorescence efficiency, summarized in this Perspective, would be helpful in developing highly phosphorescent Ir(III) complexes.


Journal of the American Chemical Society | 2011

Phosphorescent sensor for robust quantification of copper(II) ion.

Youngmin You; Yejee Han; Yong-Min Lee; Soo Young Park; Wonwoo Nam; Stephen J. Lippard

A phosphorescent sensor based on a multichromophoric iridium(III) complex was synthesized and characterized. The construct exhibits concomitant changes in its phosphorescence intensity ratio and phosphorescence lifetime in response to copper(II) ion. The sensor, which is reversible and selective, is able to quantify copper(II) ions in aqueous media, and it detects intracellular copper ratiometrically.


Journal of the American Chemical Society | 2011

Phosphorescent sensor for biological mobile zinc

Youngmin You; Sumin Lee; Taehee Kim; Kei Ohkubo; Weon-Sik Chae; Shunichi Fukuzumi; Gil-Ja Jhon; Wonwoo Nam; Stephen J. Lippard

A new phosphorescent zinc sensor (ZIrF) was constructed, based on an Ir(III) complex bearing two 2-(2,4-difluorophenyl)pyridine (dfppy) cyclometalating ligands and a neutral 1,10-phenanthroline (phen) ligand. A zinc-specific di(2-picolyl)amine (DPA) receptor was introduced at the 4-position of the phen ligand via a methylene linker. The cationic Ir(III) complex exhibited dual phosphorescence bands in CH(3)CN solutions originating from blue and yellow emission of the dfppy and phen ligands, respectively. Zinc coordination selectively enhanced the latter, affording a phosphorescence ratiometric response. Electrochemical techniques, quantum chemical calculations, and steady-state and femtosecond spectroscopy were employed to establish a photophysical mechanism for this phosphorescence response. The studies revealed that zinc coordination perturbs nonemissive processes of photoinduced electron transfer and intraligand charge-transfer transition occurring between DPA and phen. ZIrF can detect zinc ions in a reversible and selective manner in buffered solution (pH 7.0, 25 mM PIPES) with K(d) = 11 nM and pK(a) = 4.16. Enhanced signal-to-noise ratios were achieved by time-gated acquisition of long-lived phosphorescence signals. The sensor was applied to image biological free zinc ions in live A549 cells by confocal laser scanning microscopy. A fluorescence lifetime imaging microscope detected an increase in photoluminescence lifetime for zinc-treated A549 cells as compared to controls. ZIrF is the first successful phosphorescent sensor that detects zinc ions in biological samples.


Nature Communications | 2014

Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes

Kwon-Hyeon Kim; Sunghun Lee; Chang-Ki Moon; Sei-Yong Kim; Young-Seo Park; Jeong-Hwan Lee; Jin Woo Lee; June Huh; Youngmin You; Jang-Joo Kim

Organic light-emitting diodes (OLEDs) are among the most promising organic semiconductor devices. The recently reported external quantum efficiencies (EQEs) of 29-30% for green and blue phosphorescent OLEDs are considered to be near the limit for isotropically oriented iridium complexes. The preferred orientation of transition dipole moments has not been thoroughly considered for phosphorescent OLEDs because of the lack of an apparent driving force for a molecular arrangement in all but a few cases, even though horizontally oriented transition dipoles can result in efficiencies of over 30%. Here we use quantum chemical calculations to show that the preferred orientation of the transition dipole moments of heteroleptic iridium complexes (HICs) in OLEDs originates from the preferred direction of the HIC triplet transition dipole moments and the strong supramolecular arrangement within the co-host environment. We also demonstrate an unprecedentedly high EQE of 35.6% when using HICs with phosphorescent transition dipole moments oriented in the horizontal direction.


Inorganic Chemistry | 2014

Cyclometalated iridium(III) complexes for phosphorescence sensing of biological metal ions.

Youngmin You; Somin Cho; Wonwoo Nam

Phosphorescence signaling provides a valuable alternative to conventional bioimaging based on fluorescence. The benefits of using phosphorescent molecules include improved sensitivity and capabilities for effective elimination of background signals by time-gated acquisition. Cyclometalated Ir(III) complexes are promising candidates for facilitating phosphorescent bioimaging because they provide synthetic versatility and excellent phosphorescence properties. In this Forum Article, we present our recent studies on the development of phosphorescence sensors for the detection of metal ions based on cyclometalated iridium(III) complexes. The constructs contained cyclometalating (C^N) ligands with the electron densities and band-gap energies of the C^N ligand structures systematically varied. Receptors that chelated zinc, cupric, and chromium ions were tethered to the ligands to create phosphorescence sensors. The alterations in the C^N ligand structures had a profound influence on the phosphorescence responses to metal ions. Mechanistic studies suggested that the phosphorescence responses could be explained on the basis of the modulation of photoinduced electron transfer (PeT) from the receptor to the photoexcited iridium species. The PeT behaviors strictly adhered to the Rehm-Weller principle, and the occurrence of PeT was located in the Marcus-normal region. It is thus anticipated that improved responses will be obtainable by increasing the excited-state reduction potential of the iridium(III) complexes. Femtosecond transient absorption experiments provided evidence for the presence of an additional photophysical mechanism that involved metal-ion-induced alteration of the intraligand charge-transfer (ILCT) transition state. Utility of the mechanism by PeT and ILCT has been demonstrated for the phosphorescence sensing of biologically important transition-metal ions. In particular, the phosphorescence zinc sensor could report the presence of intracellular zinc pools by using confocal laser scanning microscopy and photoluminescence lifetime imaging microscopy techniques. We hope that the significant knowledge gained from our studies will be of great help in the design of new molecules as phosphorescence sensors.


Current Opinion in Chemical Biology | 2013

Phosphorescence bioimaging using cyclometalated Ir(III) complexes

Youngmin You

Recent advances in the development of the phosphorescent Ir(III) complexes have made it possible to implement the phosphorescence modality in bioimaging applications. A variety of phosphorescent Ir(III) complexes have been synthesized and assessed in the context of in vitro and in vivo imaging, especially in subcellular organelle staining and the sensing of biologically important analytes. The examples presented here demonstrate that Ir(III) complexes provide attractive alternatives to fluorescent organic compounds in the construction of biolabels and biosensors. The complexes are particularly advantageous with respect to fluorescent compounds in their compatibility with time-gated bioimaging techniques that completely eliminate background signals due to autofluorescence.


Journal of the American Chemical Society | 2013

Synthetic Control Over Photoinduced Electron Transfer in Phosphorescence Zinc Sensors

Hana Woo; Somin Cho; Yejee Han; Weon-Sik Chae; Dae-Ro Ahn; Youngmin You; Wonwoo Nam

Despite the promising photofunctionalities, phosphorescent probes have been examined only to a limited extent, and the molecular features that provide convenient handles for controlling the phosphorescence response have yet to be identified. We synthesized a series of phosphorescence zinc sensors based on a cyclometalated heteroleptic Ir(III) complex. The sensor construct includes two anionic cyclometalating ligands and a neutral diimine ligand that tethers a di(2-picolyl)amine (DPA) zinc receptor. A series of cyclometalating ligands with a range of electron densities and band gap energies were used to create phosphorescence sensors. The sensor series was characterized by variable-temperature steady-state and transient photoluminescence spectroscopy studies, electrochemical measurements, and quantum chemical calculations based on time-dependent density functional theory. The studies demonstrated that the suppression of nonradiative photoinduced electron transfer (PeT) from DPA to the photoexcited Ir(IV) species provided the underlying mechanism that governed the phosphorescent response to zinc ions. Importantly, the Coulombic barrier, which was located on either the cyclometalating ligand or the diimine ligand, negligibly influenced the PeT process. Phosphorescence modulation by PeT strictly obeyed the Rehm-Weller principle, and the process occurred in the Marcus-normal region. These findings provide important guidelines for improving sensing performance; an efficient phosphorescence sensor should include a cyclometalating ligand with a wide band gap energy and a deep oxidation potential. Finally, the actions of the sensor were demonstrated by visualizing the intracellular zinc ion distribution in HeLa cells using a confocal laser scanning microscope and a photoluminescence lifetime imaging microscope.


Chemical Communications | 2012

A fluorescence turn-on H2O2 probe exhibits lysosome-localized fluorescence signals

Dayoung Song; Jung Mi Lim; Somin Cho; Su-Jin Park; Jaeheung Cho; Dongmin Kang; Sue Goo Rhee; Youngmin You; Wonwoo Nam

A new fluorescence turn-on probe that responds exclusively to H(2)O(2) exhibits subcellular localized fluorescence staining of lysosomes.


Inorganic Chemistry | 2011

Scandium ion-enhanced oxidative dimerization and N-demethylation of N,N-dimethylanilines by a non-heme iron(IV)-oxo complex.

J.-G. Park; Yuma Morimoto; Yong-Min Lee; Youngmin You; Wonwoo Nam; Shunichi Fukuzumi

Oxidative dimerization of N,N-dimethylaniline (DMA) occurs with a nonheme iron(IV)-oxo complex, [Fe(IV)(O)(N4Py)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), to yield the corresponding dimer, tetramethylbenzidine (TMB), in acetonitrile. The rate of the oxidative dimerization of DMA by [Fe(IV)(O)(N4Py)](2+) is markedly enhanced by the presence of scandium triflate, Sc(OTf)(3) (OTf = CF(3)SO(3)(-)), when TMB is further oxidized to the radical cation (TMB(•+)). In contrast, we have observed the oxidative N-demethylation with para-substituted DMA substrates, since the position of the C-C bond formation to yield the dimer is blocked. The rate of the oxidative N-demethylation of para-substituted DMA by [Fe(IV)(O)(N4Py)](2+) is also markedly enhanced by the presence of Sc(OTf)(3). In the case of para-substituted DMA derivatives with electron-donating substituents, radical cations of DMA derivatives are initially formed by Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+), giving demethylated products. Binding of Sc(3+) to [Fe(IV)(O)(N4Py)](2+) enhances the Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+), whereas binding of Sc(3+) to DMA derivatives retards the electron-transfer reaction. The complicated kinetics of the Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+) are analyzed by competition between binding of Sc(3+) to DMA derivatives and to [Fe(IV)(O)(N4Py)](2+). The binding constants of Sc(3+) to DMA derivatives increase with the increase of the electron-donating ability of the para-substituent. The rate constants of Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+), which are estimated from the binding constants of Sc(3+) to DMA derivatives, agree well with those predicted from the driving force dependence of the rate constants of Sc(3+) ion-coupled electron transfer from one-electron reductants to [Fe(IV)(O)(N4Py)](2+). Thus, oxidative dimerization of DMA and N-demethylation of para-substituted DMA derivatives proceed via Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+).


Applied Physics Letters | 2007

A highly efficient wide-band-gap host material for blue electrophosphorescent light-emitting devices

Dong Ryeol Whang; Youngmin You; Se Hun Kim; Won-Ik Jeong; Young-Seo Park; Jang-Joo Kim; Soo Young Park

We report on an efficient wide-band-gap host material for blue electrophosphorescence devices, namely, 1,2-trans-di-9-carbazolylcyclobutane (DCz). Photophysical studies show that lower-energy excimer formation between the carbazole units can be efficiently suppressed in a DCz film, thus maintaining its high triplet-state energy and inducing an exothermic energy transfer from DCz to iridium(III)bis[(4,6-difluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic). Electrophosphorescent devices comprising a FIrpic:DCz emitting layer exhibit a superior performance with a maximum external quantum efficiency of 9.8%, a maximum luminance efficiency of 21.5cd∕A, and a maximum power efficiency of 15.0lm∕W at 0.01mA∕cm2.

Collaboration


Dive into the ngmin You's collaboration.

Top Co-Authors

Avatar

Soo Young Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Wonwoo Nam

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gyurim Park

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Jang-Joo Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sinheui Kim

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Somin Cho

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Sumin Lee

Ewha Womans University

View shared research outputs
Researchain Logo
Decentralizing Knowledge