Youngnam Cho
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youngnam Cho.
Langmuir | 2011
Grace Kang; Richard B. Borgens; Youngnam Cho
We present the preparation of electrically conductive, porous polypyrrole surfaces and demonstrate their use as an interactive substrate for neuronal growth. Nerve growth factor (NGF)-loaded porous conducting polymers were initially prepared by electrochemical deposition of a mixture of pyrrole monomers and NGF into two- or three-dimensional particle arrays followed by subsequent removal of a sacrificial template. Morphological observation by scanning electron microscopy (SEM) revealed these to possess high regularity and porosity with well-defined topographical features. A four-point probe study demonstrated remarkable electrical activities despite the presence of voids. In addition, we investigated the effects of these surfaces on cellular behaviors using PC 12 cells in the presence and absence of electrical stimulation. Our results suggest that the surface topography as well as an applied electrical field can play a crucial role in determining further cell responses. Indeed, surface-induced preferential regulation leads to enhanced cellular viability and neurite extension. Establishing the underlying cellular mechanisms in response to various external stimuli is essential in that one can elicit positive neuronal guidance and modulate their activities by engineering a series of electrical, chemical, and topographical cues.
Journal of Biomedical Materials Research Part A | 2010
Youngnam Cho; Richard B. Borgens
We report the preparation of an electrically conductive composite composed of collagen and carbon nanotubes (CNTs) and its use as a substrate for the in vitro growth of PC12 cells. Morphological observation by scanning electron microscopy (SEM) indicated the homogenous dispersion of CNTs in the collagen matrix. Four-point probe and cyclic voltammogram studies demonstrated the enhanced electroactivity and a lowered electrical resistivity of the resulting composites even at low loadings (<5%) of CNTs. Cellular metabolic activity was evaluated by the MTT assay. Cell viability was systematically related to the amount of CNTs embedded in the collagen matrix. SEM and immunofluorescent images have indicated that the morphological features of PC12 cells were dominantly influenced by electrical potential. Greater neurite extension was preferentially induced on the exposure of electrical stimulation by facilitating the differentiation of PC12 cells into neurons indicated by more significant filopodium extension. These electrically conductive, biocompatible CNT/collagen composites could be of benefit for the development of novel neural electrodes, enhancing the growth, differentiation, and branching of neurons in an electrically driven way.
Nanomedicine: Nanotechnology, Biology and Medicine | 2008
Youngnam Cho; Richard B. Borgens; Albena Ivanisevic
AIMS Mesoporous silica nanoparticles (MSNs) were prepared and characterized to develop a drug delivery system by loading them with hydralazine and functionalizing them with polyethylene glycol. These agents restore damaged cell membranes and ameliorate abnormal mitochondria behavior induced by the endogenous toxin acrolein. Such a formulation shows potential as a novel therapeutic agent. RESULTS & DISCUSSION MSNs with encapsulated hydralazine and covalently linked with polyethylene glycol were subsequently synthesized and characterized by transmission-electron microscopy, N(2) adsorption/desorption, x-ray diffraction and UV-vis spectroscopy. MSNs exhibited large surface area, pore volume and tunable pore size. The mean particle size was 100 nm and hydralazine encapsulation efficiency was almost 25%. These were tested using PC12 in culture to restore their disrupted cell membrane and to improve mitochondria function associated with oxidative stress after exposure to acrolein. Lactate dehydrogenase, MTT, ATP and glutathione assays were used to examine the physiological functioning of the samples and the loss of lactate dehydrogenase from the cytoplasm assayed the integrity of the membranes. These evaluations are sufficient to initially demonstrate drug delivery (concentrated hydralazine) into the compromised cells cytoplasm using the MSNs as a vehicle. CONCLUSION MSNs modified with drug/polymer constructs provide significant neuroprotection to cells damaged by a usually lethal exposure to acrolein.
Nanotechnology | 2009
Youngnam Cho; Albena Ivanisevic; Richard B. Borgens
In this study, a mesoporous silica nanoparticle (MSN)-based nerve growth factor (NGF) delivery system has been successfully embedded within an electroactive polypyrrol (Ppy). The spherical particles with approximately 100 nm diameter possess a large surface-to-volume ratio for the entrapment of NGF into the pores of MSNs while retaining their bioactivity. Direct incorporation of MSN-NGF within Ppy was achieved during electrochemical polymerization. The loading amount and release profile of NGF from the composite was investigated by sandwich ELISA. The NGF incorporation can be controllable by varying particle concentration or by extending electrodeposition time. The morphology and chemical composition of the Ppy/MSN-NGF composite was evaluated by atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS). Optical and electron microscopy revealed a characteristic attachment of PC 12 cells and the outgrowth of their neurites when grown on the Ppy/MSN-NGF composite as a result of a sustained and controlled release of NGF. In order to observe the effectiveness of electrical stimulation, neurite extension of cells cultured on unstimulated and stimulated Ppy/MSN-NGF was compared. The NGF release in the presence of electrical stimulation promoted significantly greater neurite extension.
Small | 2008
Youngnam Cho; Richard B. Borgens; Albena Ivanisevic
There is no medical therapy for severe spinal-cord or brain injury that can restore behavioral loss in the chronic condition, or rapidly repair the membranes of damaged nerve cells in the acute stage of the injury. The latter permits rapid recovery of physiological functioning after injury, and largely vitiates continuing and progressive cell death. Here we describe for the first time a microcolloid composite, ranging from 50 to 300 nm, made of nonbiological, inert, and nontoxic components that fulfill all of the requirements of the latter therapy. From an applied-engineering standpoint, tools fabricated by nanotechnology have the potential to lead to more effective ways to treat and predict disease, though a particular therapy for central nervous system (CNS) injury or disease has yet to be realized. Recent activity in nanotechnology has substantially improved colloid-based systems. The versatility of materials with inherent unique properties (optical, electrical, magnetic, and chemical) can be realized with the incorporation of a variety of biocompatible and biodegradable materials such as synthetic or natural polymers, lipids, or solid (metal, semiconductor, magnetic, or insulator) components. Of these, silica particles have several advantages: i) they ride upon a wealth of well-established methods for the synthesis and incorporation with other substances through surface modification and bioconjugation; ii) they have great potential to perform multifunctional activity; and iii) they exhibit intrinsic hydrophilicity, biocompatibility, and nontoxicity. In addition, inorganic cores, rather than organic cores such as micelles, have a longer ‘‘shelf life’’.
Journal of Neuroscience Research | 2010
Youngnam Cho; Albena Ivanisevic; Richard B. Borgens
The mechanical damage to neurons and their processes induced by spinal cord injury (SCI) causes a progressive cascade of pathophysiological events beginning with the derangement of ionic equilibrium and collapse of membrane permeability. This leads to a cumulative deterioration of neurons, axons, and the tissue architecture of the cord. We have previously shown that the application of the hydrophilic polymer polyethylene glycol (PEG) following spinal cord or brain injury can rapidly restore membrane integrity, reduce oxidative stress, restore impaired axonal conductivity, and mediate functional recovery in rats, guinea pigs, and dogs. However there are limits to both the concentration and the molecular weight of the application that do not permit the broadest recovery across an injured animal population. In this study, PEG‐decorated silica nanoparticles (PSiNPs) sealed cells, as shown by the significantly reduced leakage of lactate dehydrogenase from damaged cells compared with uncoated particles or PEG alone. Further in vivo tests showed that PSiNPs also significantly reduced the formation of reactive oxygen species and the process of lipid peroxidation of the membrane. Fabrication of PSiNPs containing embedded dyes also revealed targeting of the particles to damaged, but not undamaged, spinal cord tissues. In an in vivo crush/contusion model of guinea pig SCI, every animal but one injected with PSiNPs recovered conduction through the cord lesion, whereas none of the control animals did. These findings suggest that the use of multifunctional nanoparticles may offer a novel treatment approach for spinal cord injury, traumatic brain injury, and possibly neurodegenerative disorders.
Langmuir | 2011
Youngnam Cho; Richard B. Borgens
A novel method for the preparation of biotin-doped porous conductive surfaces has been suggested for a variety of applications, especially for an electrically controlled release system. Well-ordered and three-dimensional porous conductive structures have been obtained by the electrochemical deposition of the aqueous biotin-pyrrole monomer mixture into particle arrays, followed by subsequent removal of the colloidal particles. Advantageously, direct incorporation of biotin molecules enhances the versatility by modifying surfaces through site-directed conjugate formation, thus facilitating further reactions. In addition, the porosity of the surfaces provides a significant impact on enhanced immobilization and efficient release of streptavidin-tagged gold nanoparticles. Biotinylated porous polypyrrole (Ppy) films were characterized by several techniques: (1) scanning electron microscopy (SEM) to evaluate surface topography, (2) X-ray photoelectron spectroscopy (XPS) to assess the potential-dependent chemical composition of the films, (3) four-point probe evaluation to measure the conductivity, cyclic voltammetry to observe surface eletroactivity, and contact angle measurement to evaluate the surface wettability, and (4) fluorescence microscopy to image and quantify the adsorption and release of gold nanoparticles. Overall, our results demonstrate that these biotinylated porous Ppy films, combined with electrical stimulation, permit a programmable release of gold nanoparticles by altering the chemical strength of the Ppy-biotin interaction.
Nanotechnology | 2010
Youngnam Cho; Richard B. Borgens
The deposition of carboxylic acid-terminated conducting polymer into two- or three-dimensional structures made up of colloidal particles has been successfully completed. This was accomplished using electrochemical deposition of ordered arrays of mesoporous silica nanoparticles (MSNs) as a template. Subsequent removal of the template yielded a porous polypyrrole surface. The co-polymerization of pyrrole with carboxylic acid-terminated pyrrole derivatives overcame the limitations of a lack of reactive functional groups--by facilitating the direct coupling of the film with biomolecules or drugs on the surface. Such Ppy films were characterized by several techniques: (1) scanning electron microscope (SEM) to evaluate surface topography, (2) x-ray photoelectron spectroscopy (XPS) to assess the chemical composition of the films, (3) four-point probe to measure the conductivity, and cyclic voltammogram to observe surface electroactivity. To assay the biological effectiveness of this preparation, we used phase-contrast light microscopy to compare neurite outgrowth from PC 12 cells grown on Ppy films in the presence and absence of electrical stimulation. These electrically functional, biocompatible composites show promise as novel neural implants that would deliver specific biologically active molecules in a highly localized manner to damaged or otherwise vulnerable cells such as found in the nervous system.
Biosensors and Bioelectronics | 2016
Wooyoung Hong; Sooyeon Lee; Eun Jae Kim; Maria Lee; Youngnam Cho
In the present study, we describe a reusable electrochemical immunosensor for the repeated detection of cancer biomarkers using a single platform. The integration of a temperature-responsive polymer on the electrode surface enables easy manipulation of the biological sensing interface (i.e., addition of biotin, streptavidin, and antibody), thus allowing for temperature-induced regeneration and disruption of the interface architecture of the electrode surface. Using our immunosensor, we demonstrate sequential amperometric detection of three tumor markers: CA125, CEA, and PSA. Interestingly, greatly amplified signals are achieved by immersing the immunosensor in a solution of horseradish peroxidase (HRP) and antibody-labeled nanoparticles, resulting in a linear range of 0.0064 to 256 U/mL, 1 pg/mL to 100 ng/mL, and 10 pg/mL to 10 ng/mL with a detection limit of 0.007 U/mL, 0.7 pg/mL, and 0.9 pg/mL for CA125, CEA, and PSA, respectively. By alternating temperature, the immunosensor adsorbs and desorbs the biological elements without damage. Our proposed methodology can be expanded to measure other relevant biological species by repeated detection and thus has enormous potential for industrial and clinical applications.
Langmuir | 2015
HyungJae Lee; Wooyoung Hong; SeungHyun Jeon; Yongdoo Choi; Youngnam Cho
An electroresponsive drug release system based on polypyrrole (Ppy) nanowires was developed to induce the local delivery of anticancer drug, doxorubicin (DOX), according to the applied electric field. DOX-conjugated Ppy nanowire (NW) (DOX/Ppy NW) array was initially prepared by electrochemical deposition of a mixture of pyrrole monomers and biotin as dopants in the anodic alumina oxide membrane as a sacrificial template. Morphological observation by scanning electron microscopy revealed free-standing and 3D nanotopographical features with large surface area and high density. In addition, we investigated the antitumor efficacy of DOX released from DOX/Ppy NW array in response to the external electric field using two kinds of cancer cell lines, human oral squamous carcinoma cells (KB cells) and human breast cancer cells (MCF7 cells). Meanwhile, strong photothermal effect as a result of a near-infrared absorbing ability of Ppy synergistically maximizes the chemotherapeutic efficacy. Our results suggested that the proposed multifunctional Ppy platform possessing several beneficial features is very promising for many therapeutic applications including cancer.