Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youngoh Lee is active.

Publication


Featured researches published by Youngoh Lee.


ACS Nano | 2014

Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins

Jonghwa Park; Youngoh Lee; Jaehyung Hong; Minjeong Ha; Youngdo Jung; Hyuneui Lim; Sung Youb Kim; Hyunhyub Ko

The development of flexible electronic skins with high sensitivities and multimodal sensing capabilities is of great interest for applications ranging from human healthcare monitoring to robotic skins to prosthetic limbs. Although piezoresistive composite elastomers have shown great promise in this area of research, typically poor sensitivities and low response times, as well as signal drifts with temperature, have prevented further development of these materials in electronic skin applications. Here, we introduce and demonstrate a design of flexible electronic skins based on composite elastomer films that contain interlocked microdome arrays and display giant tunneling piezoresistance. Our design substantially increases the change in contact area upon loading and enables an extreme resistance-switching behavior (ROFF/RON of ∼10(5)). This translates into high sensitivity to pressure (-15.1 kPa(-1), ∼0.2 Pa minimum detection) and rapid response/relaxation times (∼0.04 s), with a minimal dependence on temperature variation. We show that our sensors can sensitively monitor human breathing flows and voice vibrations, highlighting their potential use in wearable human-health monitoring systems.


ACS Nano | 2014

Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures.

Jonghwa Park; Youngoh Lee; Jaehyung Hong; Youngsu Lee; Minjeong Ha; Youngdo Jung; Hyuneui Lim; Sung Youb Kim; Hyunhyub Ko

Stretchable electronic skins with multidirectional force-sensing capabilities are of great importance in robotics, prosthetics, and rehabilitation devices. Inspired by the interlocked microstructures found in epidermal-dermal ridges in human skin, piezoresistive interlocked microdome arrays are employed for stress-direction-sensitive, stretchable electronic skins. Here we show that these arrays possess highly sensitive detection capability of various mechanical stimuli including normal, shear, stretching, bending, and twisting forces. Furthermore, the unique geometry of interlocked microdome arrays enables the differentiation of various mechanical stimuli because the arrays exhibit different levels of deformation depending on the direction of applied forces, thus providing different sensory output patterns. In addition, we show that the electronic skins attached on human skin in the arm and wrist areas are able to distinguish various mechanical stimuli applied in different directions and can selectively monitor different intensities and directions of air flows and vibrations.


Science Advances | 2015

Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli

Jonghwa Park; Marie Kim; Youngoh Lee; Heon Lee; Hyunhyub Ko

Fingertip skin-mimicking ferroelectric skins sensitively detect and discriminate static/dynamic pressure and temperature. In human fingertips, the fingerprint patterns and interlocked epidermal-dermal microridges play a critical role in amplifying and transferring tactile signals to various mechanoreceptors, enabling spatiotemporal perception of various static and dynamic tactile signals. Inspired by the structure and functions of the human fingertip, we fabricated fingerprint-like patterns and interlocked microstructures in ferroelectric films, which can enhance the piezoelectric, pyroelectric, and piezoresistive sensing of static and dynamic mechanothermal signals. Our flexible and microstructured ferroelectric skins can detect and discriminate between multiple spatiotemporal tactile stimuli including static and dynamic pressure, vibration, and temperature with high sensitivities. As proof-of-concept demonstration, the sensors have been used for the simultaneous monitoring of pulse pressure and temperature of artery vessels, precise detection of acoustic sounds, and discrimination of various surface textures. Our microstructured ferroelectric skins may find applications in robotic skins, wearable sensors, and medical diagnostic devices.


ACS Nano | 2015

Triboelectric generators and sensors for self-powered wearable electronics.

Minjeong Ha; Jonghwa Park; Youngoh Lee; Hyunhyub Ko

In recent years, the field of wearable electronics has evolved at a rapid pace, requiring continued innovation in technologies in the fields of electronics, energy devices, and sensors. In particular, wearable devices have multiple applications in healthcare monitoring, identification, and wireless communications, and they are required to perform well while being lightweight and having small size, flexibility, low power consumption, and reliable sensing performances. In this Perspective, we introduce two recent reports on the triboelectric generators with high-power generation achieved using flexible and lightweight textiles or miniaturized and hybridized device configurations. In addition, we present a brief overview of recent developments and future prospects of triboelectric energy harvesters and sensors, which may enable fully self-powered wearable devices with significantly improved sensing capabilities.


Nano Letters | 2015

Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices

Saewon Kang; Taehyo Kim; Seungse Cho; Youngoh Lee; Ayoung Choe; Bright Walker; Seo-Jin Ko; Jin Young Kim; Hyunhyub Ko

Percolation networks of silver nanowires (AgNWs) are commonly used as transparent conductive electrodes (TCEs) for a variety of optoelectronic applications, but there have been no attempts to precisely control the percolation networks of AgNWs that critically affect the performances of TCEs. Here, we introduce a capillary printing technique to precisely control the NW alignment and the percolation behavior of AgNW networks. Notably, partially aligned AgNW networks exhibit a greatly lower percolation threshold, which leads to the substantial improvement of optical transmittance (96.7%) at a similar sheet resistance (19.5 Ω sq(-1)) as compared to random AgNW networks (92.9%, 20 Ω sq(-1)). Polymer light-emitting diodes (PLEDs) using aligned AgNW electrodes show a 30% enhanced maximum luminance (33068 cd m(-2)) compared to that with random AgNWs and a high luminance efficiency (14.25 cd A(-1)), which is the highest value reported so far using indium-free transparent electrodes for fluorescent PLEDs. In addition, polymer solar cells (PSCs) using aligned AgNW electrodes exhibit a power conversion efficiency (PCE) of 8.57%, the highest value ever reported to date for PSCs using AgNW electrodes.


Journal of Materials Chemistry B | 2016

Micro/nanostructured surfaces for self-powered and multifunctional electronic skins

Jonghwa Park; Youngoh Lee; Minjeong Ha; Seungse Cho; Hyunhyub Ko

Flexible electronic devices are regarded as one of the key technologies in wearable healthcare systems, wireless communications and smart personal electronics. For the realization of these applications, wearable energy and sensor devices are the two main technologies that need to be developed into lightweight, miniaturized, and flexible forms. In this review, we introduce recent advances in the controlled design of device structures into bioinspired micro/nanostructures and 2D/3D structures for the enhancement of energy harvesting and multifunctional sensing properties of flexible electronic skins. In addition, we highlight their potential applications in flexible/wearable electronics, sensors, robotics and prosthetics, and biomedical devices.


ACS Applied Materials & Interfaces | 2015

Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors

Youngoh Lee; Jiwon Lee; Tae Kyung Lee; Jonghwa Park; Minjung Ha; Sang Kyu Kwak; Hyunhyub Ko

When semiconducting nanostructures are combined with noble metals, the surface plasmons of the noble metals, in addition to the charge transfer interactions between the semiconductors and noble metals, can be utilized to provide strong surface plasmon effects. Here, we suggest a particle-film plasmonic system in conjunction with tapered ZnO nanowire arrays for ultrasensitive SERS chemical sensors. In this design, the gap plasmons between the metal nanoparticles and the metal films provide significantly improved surface-enhanced Raman spectroscopy (SERS) effects compared to those of interparticle surface plasmons. Furthermore, 3D tapered metal nanostructures with particle-film plasmonic systems enable efficient light trapping and waveguiding effects. To study the effects of various morphologies of ZnO nanostructures on the light trapping and thus the SERS enhancements, we compare the performance of three different ZnO morphologies: ZnO nanocones (NCs), nanonails (NNs), and nanorods (NRs). Finally, we demonstrate that our SERS chemical sensors enable a molecular level of detection capability of benzenethiol (100 zeptomole), rhodamine 6G (10 attomole), and adenine (10 attomole) molecules. This work presents a new design platform based on the 3D antireflective metal/semiconductor heterojunction nanostructures, which will play a critical role in the study of plasmonics and SERS chemical sensors.


ACS Nano | 2018

Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors

Minjeong Ha; Seongdong Lim; Soowon Cho; Youngoh Lee; Sangyoon Na; Chunggi Baig; Hyunhyub Ko

The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm2), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.


ACS Nano | 2018

Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range

Youngoh Lee; Jonghwa Park; Soowon Cho; Young-Eun Shin; Hochan Lee; Jin Young Kim; Jinyoung Myoung; Seungse Cho; Saewon Kang; Chunggi Baig; Hyunhyub Ko

Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa-1, 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.


Sensors | 2017

A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications

Sung-Woo Kim; Youngoh Lee; Jonghwa Park; Seungmok Kim; Hee Young Chae; Hyunhyub Ko; Jae Joon Kim

This study presents a flexible wireless electronic skin (e-skin) sensor system that includes a multi-functional sensor device, a triple-mode reconfigurable readout integrated circuit (ROIC), and a mobile monitoring interface. The e-skin device’s multi-functionality is achieved by an interlocked micro-dome array structure that uses a polyvinylidene fluoride and reduced graphene oxide (PVDF/RGO) composite material that is inspired by the structure and functions of the human fingertip. For multi-functional implementation, the proposed triple-mode ROIC is reconfigured to support piezoelectric, piezoresistance, and pyroelectric interfaces through single-type e-skin sensor devices. A flexible system prototype was developed and experimentally verified to provide various wireless wearable sensing functions—including pulse wave, voice, chewing/swallowing, breathing, knee movements, and temperature—while their real-time sensed data are displayed on a smartphone.

Collaboration


Dive into the Youngoh Lee's collaboration.

Top Co-Authors

Avatar

Hyunhyub Ko

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jonghwa Park

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Minjeong Ha

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seungse Cho

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jin Young Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seongdong Lim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Doo-Seung Um

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hochan Lee

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jaehyung Hong

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Saewon Kang

Ulsan National Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge