Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youngshim Choi is active.

Publication


Featured researches published by Youngshim Choi.


Brain Research | 2016

Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress

Mohammed Akbar; Musthafa Mohamed Essa; Ghazi Daradkeh; Mohamed A. Abdelmegeed; Youngshim Choi; Lubna Mahmood; Byoung J. Song

Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimers disease, Parkinsons disease, Huntingtons disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.


Free Radical Biology and Medicine | 2016

Cytochrome P450-2E1 promotes aging-related hepatic steatosis, apoptosis and fibrosis through increased nitroxidative stress.

Mohamed A. Abdelmegeed; Youngshim Choi; Seung Kwon Ha; Byoung J. Song

The role of ethanol-inducible cytochrome P450-2E1 (CYP2E1) in promoting aging-dependent hepatic disease is unknown and thus was investigated in this study. Young (7 weeks) and aged female (16 months old) wild-type (WT) and Cyp2e1-null mice were used in this study to evaluate age-dependent changes in liver histology, steatosis, apoptosis, fibrosis and many nitroxidative stress parameters. Liver histology showed that aged WT mice exhibited markedly elevated hepatocyte vacuolation, ballooning degeneration, and inflammatory cell infiltration compared to all other groups. These changes were accompanied with significantly higher hepatic triglyceride and serum cholesterol in aged WT mice although serum ALT and insulin resistance were not significantly altered. Aged WT mice showed the highest rates of hepatocyte apoptosis and hepatic fibrosis. Further, the highest levels of hepatic hydrogen peroxide, lipid peroxidation, protein carbonylation, nitration, and oxidative DNA damage were observed in aged WT mice. These increases in the aged WT mice were accompanied by increased levels of mitochondrial nitroxidative stress and alteration of mitochondrial complex III and IV proteins in aged WT mice, although hepatic ATP levels seems to be unchanged. In contrast, the aging-related nitroxidative changes were very low in aged Cyp2e1-null mice. These results suggest that CYP2E1 is important in causing aging-dependent hepatic steatosis, apoptosis and fibrosis possibly through increasing nitroxidative stress and that CYP2E1 could be a potential target for translational research in preventing aging-related liver disease.


Scientific Reports | 2017

Cytochrome P450-2E1 promotes fast food-mediated hepatic fibrosis

Mohamed A. Abdelmegeed; Youngshim Choi; Grzegorz Godlewski; Seung Kwon Ha; Atrayee Banerjee; Sehwan Jang; Byoung J. Song

Cytochrome P450-2E1 (CYP2E1) increases oxidative stress. High hepatic cholesterol causes non-alcoholic steatohepatitis (NASH) and fibrosis. Thus, we aimed to study the role of CYP2E1 in promoting liver fibrosis by high cholesterol-containing fast-food (FF). Male wild-type (WT) and Cyp2e1-null mice were fed standard chow or FF for 2, 12, and 24 weeks. Various parameters of liver fibrosis and potential mechanisms such as oxidative and endoplasmic reticulum (ER) stress, inflammation, and insulin resistance (IR) were studied. Indirect calorimetry was also used to determine metabolic parameters. Liver histology showed that only WT fed FF (WT-FF) developed NASH and fibrosis. Hepatic levels of fibrosis protein markers were significantly increased in WT-FF. The nitroxidative stress marker iNOS, but not CYP2E1, was significantly elevated only in FF-fed WT. Serum endotoxin, TLR-4 levels, and inflammatory markers were highest in WT-FF. FAS, PPAR-α, PPAR-γ, and CB1-R were markedly altered in WT-FF. Electron microscopy and immunoblot analyses showed significantly higher levels of ER stress in FF-fed WT. Indirect calorimetry showed that Cyp2e1-null-mice fed FF exhibited consistently higher total energy expenditure (TEE) than their corresponding WT. These results demonstrate that CYP2E1 is important in fast food-mediated liver fibrosis by promoting nitroxidative and ER stress, endotoxemia, inflammation, IR, and low TEE.


Food and Chemical Toxicology | 2017

Diet high in fructose promotes liver steatosis and hepatocyte apoptosis in C57BL/6J female mice: Role of disturbed lipid homeostasis and increased oxidative stress.

Youngshim Choi; Mohamed A. Abdelmegeed; Byoung J. Song

The effects of high (H)-fructose (FR) diet (D) (HFRD) on hepatic lipid homeostasis, oxidative stress, inflammation and hepatocyte apoptosis were investigated in 6-week old female C57BL/6J mice fed a regular chow (ContD) or HFRD (35% fructose-derived calories) for 3 weeks. HFRD-fed mice exhibited increased levels of hepatic steatosis with a significant elevation of serum levels of triglyceride, cholesterol and TNFα compared to ContD-fed mice (P<0.05). HFRD-fed mice exhibited ∼2.7- fold higher levels FAS along with significantly decreased protein levels of adiponection-R2 (∼30%), P-AMPK (∼60%), P-ACC (∼70%) and RXR-α (∼55%), suggesting decreased hepatic fat oxidation compared to controls. Interestingly, hepatic fatty acid uptake into hepatocytes and lipolysis were significantly increased in HFRD-fed mice, as shown by decreased CD36 and fatty acid transporter protein-2, and increased adipose triglyceride lipase, respectively (P<0.05). Increased hepatic levels of iNOS and GSSG/GSH suggest elevated oxidative stress with a higher number of macrophages in the adipose tissue in HFRD-fed mice (P<0.05). Significantly elevated rates of hepatocyte apoptosis (∼2.4-fold), as determined by TUNEL analysis with increased Bax/Bcl2 ratio and PARP-1 levels (∼2- and 1.5-fold, respectively), were observed in HFRD-fed mice. Thus, HFRD exposure increased hepatic steatosis accompanied by oxidative stress and inflammation, leading to hepatocyte apoptosis.


Journal of Nutritional Biochemistry | 2016

Dietary walnut reduces hepatic triglyceride content in high-fat-fed mice via modulation of hepatic fatty acid metabolism and adipose tissue inflammation

Youngshim Choi; Mohamed A. Abdelmegeed; Mohammed Akbar; Byoung J. Song

In this study, we evaluated the protective effects of dietary walnuts on high-fat diet (HFD)-induced fatty liver and studied the underlying mechanisms. Male C57BL/6J mice were fed either a regular rodent chow or HFD (45% energy-derived) with or without walnuts (21.5% energy-derived) for 20weeks. Walnut supplementation did not change HFD-induced increase in body weight or visceral fat mass. However, dietary walnuts significantly decreased the amounts of hepatic triglyceride (TG) observed in HFD-fed mice. The addition of walnuts significantly altered the levels of proteins, involved in the hepatic lipid homeostasis, including AMP-activated protein kinase, fatty acid synthase and peroxisome proliferator-activated receptor-α. Since adipocyte inflammation and apoptosis are reportedly important in regulating hepatic fat accumulation, we also evaluated the protective effects of walnuts on adipose tissue injury. Real-time polymerase chain reaction results revealed that adipose tissues isolated from mice fed the HFD+walnut diets showed significantly decreased levels of macrophage infiltration with suppressed expression of proinflammatory genes compared to those significantly elevated in mice fed HFD alone. These improvements also coincided with reduction of HFD-induced apoptosis of adipocytes by dietary walnuts. However, the supplemented walnuts did not significantly alter HFD-induced peripheral glucose intolerance or insulin resistance despite a trend of improvement. Collectively, these results demonstrate that the protective effects of walnuts against HFD-induced hepatic TG accumulation in mice are mediated, at least partially, by modulating the key proteins in hepatic lipid homeostasis and suppression of the genes related to adipose tissue inflammation and macrophage infiltration as well as prevention of adipocyte apoptosis.


Journal of Nutritional Biochemistry | 2016

Preventive effects of dietary walnuts on high-fat-induced hepatic fat accumulation, oxidative stress and apoptosis in mice

Youngshim Choi; Mohamed A. Abdelmegeed; Byoung J. Song

We hypothesized that dietary walnut would prevent high-fat-diet (HFD)-induced hepatic apoptosis based on its antioxidant properties. Male C57BL/6J mice were fed a rodent chow or HFD (45% energy-derived)±walnuts (21.5% energy-derived) for 6 weeks. Liver histological and biochemical analyses revealed significantly elevated fat accumulation in mice fed HFD compared to mice fed the chow or HFD±walnuts. Walnut supplementation prevented HFD-mediated alteration of the levels of key proteins in lipid homeostasis such as Sirt1, AMPK and FAS, leading to decreased fat accumulation. In addition, walnut supplementation to HFD significantly decreased the hepatic levels of cytochrome P450-2E1, nitrated proteins and lipid peroxidation. Furthermore, walnut supplementation decreased the activated cell-death-associated p-JNK and p-p38K accompanied with increased hepatocyte apoptosis in HFD group. The beneficial effects of dietary walnut likely result, at least partially, from its antioxidant ingredients and attenuating HFD-induced hepatic steatosis, nitroxidative stress and apoptosis.


Current Molecular Pharmacology | 2017

Role of CYP2E1 in Mitochondrial Dysfunction and Hepatic Injury by Alcohol and Non-Alcoholic Substances

Mohamed A. Abdelmegeed; Seung Kwon Ha; Youngshim Choi; Mohammed Akbar; Byoung J. Song

Alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD) are two pathological conditions that are spreading worldwide. Both conditions are remarkably similar with regard to the pathophysiological mechanism and progression despite different causes. Oxidative stressinduced mitochondrial dysfunction through post-translational protein modifications and/or mitochondrial DNA damage has been a major risk factor in both AFLD and NAFLD development and progression. Cytochrome P450-2E1 (CYP2E1), a known important inducer of oxidative radicals in the cells, has been reported to remarkably increase in both AFLD and NAFLD. Interestingly, CYP2E1 isoforms expressed in both endoplasmic reticulum (ER) and mitochondria, likely lead to the deleterious consequences in response to alcohol or in conditions of NAFLD after exposure to high fat diet (HFD) and in obesity and diabetes. Whether CYP2E1 in both ER and mitochondria work simultaneously or sequentially in various conditions and whether mitochondrial CYP2E1 may exert more pronounced effects on mitochondrial dysfunction in AFLD and NAFLD are unclear. The aims of this review are to briefly describe the role of CYP2E1 and resultant oxidative stress in promoting mitochondrial dysfunction and the development or progression of AFLD and NAFLD, to shed a light on the function of the mitochondrial CYP2E1 as compared with the ER-associated CYP2E1. We finally discuss translational research opportunities related to this field.


Journal of Nutritional Biochemistry | 2018

Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis

Youngshim Choi; Mohamed A. Abdelmegeed; Byoung J. Song

Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation.


Food and Chemical Toxicology | 2017

Cytochrome P450-2E1 is involved in aging-related kidney damage in mice through increased nitroxidative stress

Mohamed A. Abdelmegeed; Youngshim Choi; Seung Kwoon Ha; Byoung J. Song

The aim of this study was to investigate the role of cytochrome P450-2E1 (CYP2E1) in aging-dependent kidney damage since it is poorly understood. Young (7 weeks) and aged female (16-17 months old) wild-type (WT) and Cyp2e1-null mice were used. Kidney histology showed that aged WT mice exhibited typical signs of kidney aging such as cell vacuolation, inflammatory cell infiltration, cellular apoptosis, glomerulonephropathy, and fibrosis, along with significantly elevated levels of renal TNF-α and serum creatinine than all other groups. Furthermore, the highest levels of renal hydrogen peroxide, protein carbonylation and nitration were observed in aged WT mice. These increases in the aged WT mice were accompanied by increased levels of iNOS and mitochondrial nitroxidative stress through altered amounts and activities of the mitochondrial complex proteins and significantly reduced levels of the antioxidant glutathione (GSH). In contrast, the aged Cyp2e1-null mice exhibited significantly higher antioxidant capacity with elevated heme oxygenase-1 and catalase activities compared to all other groups, while maintaining normal GSH levels with significantly less mitochondrial nitroxidative stress compared to the aged WT mice. Thus, CYP2E1 is important in causing aging-related kidney damage most likely through increasing nitroxidative stress and that CYP2E1 could be a potential target in preventing aging-related kidney diseases.


Scientific Reports | 2017

Corrigendum: Cytochrome P450-2E1 promotes fast food-mediated hepatic fibrosis

Mohamed A. Abdelmegeed; Youngshim Choi; Grzegorz Godlewski; Seung-Kwon Ha; Atrayee Banerjee; Sehwan Jang; Byoung-Joon Song

Scientific Reports 7: Article number: 39764; published online: 04 January 2017; updated: 17 February 2017 In the Supplementary Information file originally published with this Article, Supplementary Table 1 was omitted. This error has now been corrected in the Supplementary Information that now accompanies the Article.

Collaboration


Dive into the Youngshim Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byoung J. Song

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mohammed Akbar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Seung Kwon Ha

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Atrayee Banerjee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Grzegorz Godlewski

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sehwan Jang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Byoung-Joon Song

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Seung Kwoon Ha

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ghazi Daradkeh

Sultan Qaboos University

View shared research outputs
Researchain Logo
Decentralizing Knowledge