YoungSu Yun
Chosun University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by YoungSu Yun.
Reliability Engineering & System Safety | 2006
Mitsuo Gen; YoungSu Yun
In the broadest sense, reliability is a measure of performance of systems. As systems have grown more complex, the consequences of their unreliable behavior have become severe in terms of cost, effort, lives, etc., and the interest in assessing system reliability and the need for improving the reliability of products and systems have become very important. Most solution methods for reliability optimization assume that systems have redundancy components in series and/or parallel systems and alternative designs are available. Reliability optimization problems concentrate on optimal allocation of redundancy components and optimal selection of alternative designs to meet system requirement. In the past two decades, numerous reliability optimization techniques have been proposed. Generally, these techniques can be classified as linear programming, dynamic programming, integer programming, geometric programming, heuristic method, Lagrangean multiplier method and so on. A Genetic Algorithm (GA), as a soft computing approach, is a powerful tool for solving various reliability optimization problems. In this paper, we briefly survey GA-based approach for various reliability optimization problems, such as reliability optimization of redundant system, reliability optimization with alternative design, reliability optimization with time-dependent reliability, reliability optimization with interval coefficients, bicriteria reliability optimization, and reliability optimization with fuzzy goals. We also introduce the hybrid approaches for combining GA with fuzzy logic, neural network and other conventional search techniques. Finally, we have some experiments with an example of various reliability optimization problems using hybrid GA approach.
Computers in Industry | 2005
Kwan Woo Kim; YoungSu Yun; Jung Mo Yoon; Mitsuo Gen; Genji Yamazaki
In this paper, we propose a hybrid genetic algorithm with fuzzy logic controller (flc-hGA) to solve the resource-constrained multiple project scheduling problem (rc-mPSP) which is well known NP-hard problem. Objectives described in this paper are to minimize total project time and to minimize total tardiness penalty. However, it is difficult to treat the rc-mPSP problems with traditional optimization techniques. The proposed new approach is based on the design of genetic operators with fuzzy logic controller (FLC) through initializing the revised serial method which outperforms the non-preemptive scheduling with precedence and resources constraints. For these rc-mPSP problems, we demonstrate that the proposed flc-hGA yields better results than conventional genetic algorithms and adaptive genetic algorithm.
Fuzzy Optimization and Decision Making | 2003
YoungSu Yun; Mitsuo Gen
In this paper, we propose some genetic algorithms with adaptive abilities and compare with them. Crossover and mutation operators of genetic algorithms are used for constructing the adaptive abilities. All together four adaptive genetic algorithms are suggested: one uses a fuzzy logic controller improved in this paper and others employ several heuristics used in conventional studies. These algorithms can regulate the rates of crossover and mutation operators during their search process. All the algorithms are tested and analyzed in numerical examples. Finally, a best genetic algorithm is recommended.
Computers & Industrial Engineering | 2008
Chiung Moon; Young Hae Lee; Chan Seok Jeong; YoungSu Yun
This paper deals with the integration of process planning and scheduling, which is one of the most important functions in a supply chain to achieve high quality products at lower cost, lower inventory, and high level of performance. Solving the problem is essential for the generation of flexible process sequences with resource selection and for the decision of the operation schedules that can minimize makespan. We formulate a mixed integer programming model to solve this problem of integration. This model considers alternative resources: sequences and precedence constraints. To solve the model, we develop a new evolutionary search approach based on a topological sort. We use the topological sort to generate a set of feasible sequences in the model within a reasonable computing time. Since precedence constraints between operations are handled by the topological sort, the developed evolutionary search approach produces only feasible solutions. The experimental results using various sizes of problems provide a way to demonstrate the efficiency of the developed evolutionary search approach.
Journal of Intelligent Manufacturing | 2006
Chiung Moon; Yoonho Seo; YoungSu Yun; Mitsuo Gen
A main function for supporting global objectives in a manufacturing supply chain is planning and scheduling. This is considered such an important function because it is involved in the assignment of factory resources to production tasks. In this paper, an advanced planning model that simultaneously decides process plans and schedules was proposed for the manufacturing supply chain (MSC). The model was formulated with mixed integer programming, which considered alternative resources and sequences, a sequence-dependent setup and transportation times.The objective of the model was to analyze alternative resources and sequences to determine the schedules and operation sequences that minimize makespan. A new adaptive genetic algorithm approach was developed to solve the model. Numerical experiments were carried out to demonstrate the efficiency of the developed approach.
Journal of Intelligent Manufacturing | 2003
YoungSu Yun; Mitsuo Gen; Seung-Lock Seo
In this paper we propose several efficient hybrid methods based on genetic algorithms and fuzzy logic. The proposed hybridization methods combine a rough search technique, a fuzzy logic controller, and a local search technique. The rough search technique is used to initialize the population of the genetic algorithm (GA), its strategy is to make large jumps in the search space in order to avoid being trapped in local optima. The fuzzy logic controller is applied to dynamically regulate the fine-tuning structure of the genetic algorithm parameters (crossover ratio and mutation ratio). The local search technique is applied to find a better solution in the convergence region after the GA loop or within the GA loop. Five algorithms including one plain GA and four hybrid GAs along with some conventional heuristics are applied to three complex optimization problems. The results are analyzed and the best hybrid algorithm is recommended.
Computers & Industrial Engineering | 2006
YoungSu Yun
This paper proposes a hybrid genetic algorithm (a-hGA) with adaptive local search scheme. For designing the a-hGA, a local search technique is incorporated in the loop of genetic algorithm (GA), and whether or not the local search technique is used in the GA is automatically determined by the adaptive local search scheme. Two modes of adaptive local search schemes are developed in this paper. First mode is to use the conditional local search method that can measure the average fitness values obtained from the continuous two generations of the a-hGA, while second one is to apply the similarity coefficient method that can measure a similarity among the individuals of the population of the a-hGA. These two adaptive local search schemes are included in the a-hGA loop, respectively. Therefore, the a-hGA can be divided into two types: a- hGA1 and a-hGA2. To prove the efficiency of the a-hGA1 and a-hGA2, a canonical GA (cGA) and a hybrid GA (hGA) with local search technique and without any adaptive local search scheme are also presented. In numerical example, all the algorithms (cGA, hGA, a-hGA1 and a-hGA2) are tested and analyzed. Finally, the efficiency of the proposed a-hGA1 and a-hGA2 is proved by various measures of performance.
Computers & Industrial Engineering | 2009
YoungSu Yun; Chiung Moon; Daeho Kim
The optimal design of supply chain (SC) is a difficult task, if it is composed of the complicated multistage structures with component plants, assembly plants, distribution centers, retail stores and so on. It is mainly because that the multistage-based SC with complicated routes may not be solved using conventional optimization methods. In this study, we propose a genetic algorithm (GA) approach with adaptive local search scheme to effectively solve the multistage-based SC problems. The proposed algorithm has an adaptive local search scheme which automatically determines whether local search technique is used in GA loop or not. In numerical example, two multistage-based SC problems are suggested and tested using the proposed algorithm and other competing algorithms. The results obtained show that the proposed algorithm outperforms the other competing algorithms.
Computers & Industrial Engineering | 2013
YoungSu Yun; Hyunsook Chung; Chiung Moon
The objective of precedence-constrained sequencing problem (PCSP) is to locate the optimal sequence with the shortest traveling time among all feasible sequences. Various methods for effectively solving the PCSP have been suggested. This paper proposes a new concept of hybrid genetic algorithm (HGA) with adaptive local search scheme in order that the PCSP should be effectively solved. By the use of the adaptive local search scheme, the local search is automatically adapted into the loop of genetic algorithm. Two types of the PCSP are presented and analyzed to compare the efficiency among the proposed HGA approach and other competing conventional approaches. Finally, it is proved that the proposed HGA approach outperforms the other competing conventional approaches.
Journal of Intelligent Manufacturing | 2011
YoungSu Yun; Chiung Moon
In this paper we propose a genetic algorithm (GA) approach based on a topological sort (TS)-based representation procedure for effectively solving precedence-constrained sequencing problems (PCSPs). The TS-based representation procedure used in the proposed GA approach can generate feasible sequences in PCSPs. By applying the proposed GA approach, the sequence determination problems with precedence constraints can be easily solved. Experimental results show that the proposed GA approach is a good alternative in locating optimal sequence for various types of PCSPs.