Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yousoo Kim is active.

Publication


Featured researches published by Yousoo Kim.


Applied Physics Express | 2012

Structure of Silicene Grown on Ag(111)

Chun-Liang Lin; Ryuichi Arafune; Kazuaki Kawahara; Noriyuki Tsukahara; Emi Minamitani; Yousoo Kim; Noriaki Takagi; Maki Kawai

The structure of silicene, the two-dimensional honeycomb sheet of Si, grown on Ag(111) was investigated by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) combined with density functional theory (DFT) calculation. Two atomic arrangements of honeycomb configuration were found by STM, which are confirmed by LEED and DFT calculations; one is 4×4 and the other is √13×√13 R13.9°. In the 4×4 structure, the honeycomb lattice remains with six atoms displaced vertically, whereas the √13×√13 R13.9° takes the regularly buckled honeycomb geometry.


Journal of Chemical Physics | 2009

The electronic structure of oxygen atom vacancy and hydroxyl impurity defects on titanium dioxide (110) surface

Taketoshi Minato; Yasuyuki Sainoo; Yousoo Kim; Hiroyuki S. Kato; Ken-ichi Aika; Maki Kawai; Jin Zhao; Hrvoje Petek; Tian Huang; Wei He; Bing Wang; Zhuo Wang; Yan Zhao; Jinlong Yang; J. G. Hou

Introducing a charge into a solid such as a metal oxide through chemical, electrical, or optical means can dramatically change its chemical or physical properties. To minimize its free energy, a lattice will distort in a material specific way to accommodate (screen) the Coulomb and exchange interactions presented by the excess charge. The carrier-lattice correlation in response to these interactions defines the spatial extent of the perturbing charge and can impart extraordinary physical and chemical properties such as superconductivity and catalytic activity. Here we investigate by experiment and theory the atomically resolved distribution of the excess charge created by a single oxygen atom vacancy and a hydroxyl (OH) impurity defects on rutile TiO(2)(110) surface. Contrary to the conventional model where the charge remains localized at the defect, scanning tunneling microscopy and density functional theory show it to be delocalized over multiple surrounding titanium atoms. The characteristic charge distribution controls the chemical, photocatalytic, and electronic properties of TiO(2) surfaces.


Nature Materials | 2010

State-selective dissociation of a single water molecule on an ultrathin MgO film

Hyung-Joon Shin; Jaehoon Jung; Kenta Motobayashi; Susumu Yanagisawa; Yoshitada Morikawa; Yousoo Kim; Maki Kawai

The interaction of water with oxide surfaces has drawn considerable interest, owing to its application to problems in diverse scientific fields. Atomic-scale insights into water molecules on the oxide surface have long been recognized as essential for a fundamental understanding of the molecular processes occurring there. Here, we report the dissociation of a single water molecule on an ultrathin MgO film using low-temperature scanning tunnelling microscopy. Two types of dissociation pathway--vibrational excitation and electronic excitation--are selectively achieved by means of injecting tunnelling electrons at the single-molecule level, resulting in different dissociated products according to the reaction paths. Our results reveal the advantage of using a MgO film, rather than bulk MgO, as a substrate in chemical reactions.


Journal of Chemical Physics | 2004

Local chemical reaction of benzene on Cu(110) via STM-induced excitation

Tadahiro Komeda; Yousoo Kim; Y. Fujita; Yasuyuki Sainoo; Maki Kawai

We have investigated the mechanism of the chemical reaction of the benzene molecule adsorbed on Cu(110) surface induced by the injection of tunneling electrons using scanning tunneling microscopy (STM). With the dosing of tunneling electrons of the energy 2-5 eV from the STM tip to the molecule, we have detected the increase of the height of the benzene molecule by 40% in the STM image and the appearance of the vibration feature of the nu(C-H) mode in the inelastic tunneling spectroscopy (IETS) spectrum. It can be understood with a model in which the dissociation of C-H bonds occurs in a benzene molecule that induces a bonding geometry change from flat-lying to up-right configuration, which follows the story of the report of Lauhon and Ho on the STM-induced change of benzene on the Cu(100) surface. [L. J. Lauhon and W. Ho, J. Phys. Chem. A 104, 2463 (2000)]. The reaction probability shows a sharp rise at the sample bias voltage at 2.4 V, which saturates at 3.0 V, which is followed by another sharp rise at the voltage of 4.3 V. No increase of the reaction yield is observed for the negative sample voltage up to 5 eV. In the case of a fully deuterated benzene molecule, it shows the onset at the same energy of 2.4 eV, but the reaction probability is 10(3) smaller than the case of the normal benzene molecule. We propose a model in which the dehydrogenation of the benzene molecule is induced by the formation of the temporal negative ion due to the trapping of the electrons at the unoccupied resonant states formed by the pi orbitals. The existence of the resonant level close to the Fermi level ( approximately 2.4 eV) and multiple levels in less than approximately 5 eV from the Fermi level, indicates a fairly strong interaction of the Cu-pi(*) state of the benzene molecule. We estimated that the large isotope effect of approximately 10(3) can be accounted for with the Menzel-Gomer-Redhead (MGR) model with an assumption of a shallow potential curve for the excited state.


Chemistry: A European Journal | 2013

Selective Aerobic Oxidation of Methanol in the Coexistence of Amines by Nanoporous Gold Catalysts: Highly Efficient Synthesis of Formamides

Shinya Tanaka; Taketoshi Minato; Eisuke Ito; Masahiko Hara; Yousoo Kim; Yoshinori Yamamoto; Naoki Asao

Holey gold: Highly selective aerobic oxidation of methanol over alkylamines was achieved with a reusable nanoporous gold (AuNPore) catalyst that was fabricated from a Au-Ag alloy. This excellent chemoselectivity enabled direct N-formylation of alkylamines from a mixture of methanol and amines. The remarkable catalytic activity was attributed to the synergistic effect between gold and the residual silver remaining in the AuNPore.


Science | 2007

Reversible Control of Hydrogenation of a Single Molecule

Satoshi Katano; Yousoo Kim; M. Hori; Michael Trenary; Maki Kawai

Low-temperature scanning tunneling microscopy was used to selectively break the N-H bond of a methylaminocarbyne (CNHCH3) molecule on a Pt(111) surface at 4.7 kelvin, leaving the C-H bonds intact, to form an adsorbed methylisocyanide molecule (CNCH3). The methylisocyanide product was identified through comparison of its vibrational spectrum with that of directly adsorbed methylisocyanide as measured with inelastic electron tunneling spectroscopy. The CNHCH3 could be regenerated in situ by exposure to hydrogen at room temperature. The combination of tip-induced dehydrogenation with thermodynamically driven hydrogenation allows a completely reversible chemical cycle to be established at the single-molecule level in this system. By tailoring the pulse conditions, irreversible dissociation entailing cleavage of both the C-H and N-H bonds can also be demonstrated.


Surface Science | 2003

Geometrical characterization of pyrimidine base molecules adsorbed on Cu(1 1 0) surfaces: XPS and NEXAFS studies

Masashi Furukawa; H. Fujisawa; Satoshi Katano; Hirohito Ogasawara; Yousoo Kim; Tadahiro Komeda; Anders Nilsson; Maki Kawai

The structures of pyrimidine base molecules of thymine and cytosine adsorbed onto Cu(110) surfaces (0 > 1.0 ML) have been discussed based on the results of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The NEXAFS analysis for azimuthal orientation of molecules on surfaces indicates that the adsorbed molecules are in an upright configuration with their n plane parallel to the row structure ([110] direction), well below saturation coverage (θ ∼ 0.2 ML). Based on the chemical shifts observed in XP spectra (N1s, O1s region), the molecules have been determined to interact with surfaces through their nitrogen atom (lone-pair) next to the carbonyl group (C=O).


Journal of the American Chemical Society | 2011

Activation of ultrathin oxide films for chemical reaction by interface defects.

Jaehoo N. Jung; Hyung-Joon Shin; Yousoo Kim; Maki Kawai

Periodic density functional theory calculations revealed strong enhancement of chemical reactivity by defects located at the oxide-metal interface for water dissociation on ultrathin MgO films deposited on Ag(100) substrate. Accumulation of charge density at the oxide-metal interface due to irregular interface defects influences the chemical reactivity of MgO films by changing the charge distribution at the oxide surface. Our results reveal the importance of buried interface defects in controlling chemical reactions on an ultrathin oxide film supported by a metal substrate.


Nature | 2016

Real-space investigation of energy transfer in heterogeneous molecular dimers

Hiroshi Imada; Kuniyuki Miwa; Miyabi Imai-Imada; Shota Kawahara; Kensuke Kimura; Yousoo Kim

Given its central role in photosynthesis and artificial energy-harvesting devices, energy transfer has been widely studied using optical spectroscopy to monitor excitation dynamics and probe the molecular-level control of energy transfer between coupled molecules. However, the spatial resolution of conventional optical spectroscopy is limited to a few hundred nanometres and thus cannot reveal the nanoscale spatial features associated with such processes. In contrast, scanning tunnelling luminescence spectroscopy has revealed the energy dynamics associated with phenomena ranging from single-molecule electroluminescence, absorption of localized plasmons and quantum interference effects to energy delocalization and intervalley electron scattering with submolecular spatial resolution in real space. Here we apply this technique to individual molecular dimers that comprise a magnesium phthalocyanine and a free-base phthalocyanine (MgPc and H2Pc) and find that locally exciting MgPc with the tunnelling current of the scanning tunnelling microscope generates a luminescence signal from a nearby H2Pc molecule as a result of resonance energy transfer from the former to the latter. A reciprocating resonance energy transfer is observed when exciting the second singlet state (S2) of H2Pc, which results in energy transfer to the first singlet state (S1) of MgPc and final funnelling to the S1 state of H2Pc. We also show that tautomerization of H2Pc changes the energy transfer characteristics within the dimer system, which essentially makes H2Pc a single-molecule energy transfer valve device that manifests itself by blinking resonance energy transfer behaviour.


Journal of Chemical Physics | 2004

Inelastic tunneling spectroscopy using scanning tunneling microscopy on trans-2-butene molecule: Spectroscopy and mapping of vibrational feature

Yasuyuki Sainoo; Yousoo Kim; Tadahiro Komeda; Maki Kawai

Inelastic tunneling spectroscopy (IETS) measurement using scanning tunneling microscopy (STM) with a commercially available STM set up is presented. The STM-IETS spectrum measured on an isolated trans-2-butene molecule on the Pd(110) shows a clear vibrational feature in d2I/dV2 at the bias voltage of 360 mV and -363 mV, which corresponds to the nu(C-H) mode (d2I/dV2 approximately 10 nA/V2). In addition, we have obtained an image by mapping the vibrational feature of nu(C-H) in d2I/dV2. The image is obtained by scanning the tip on the surface with the feedback loop activated while the modulation voltage is superimposed on the sample voltage. With the method that is readily performable with conventional software, we have clearly differentiated the molecules of trans-2-butene and butadiene through the mapping of the vibrational feature, demonstrating its capability of chemical identification in atomic scale.

Collaboration


Dive into the Yousoo Kim's collaboration.

Top Co-Authors

Avatar

Maki Kawai

Nagoya Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Trenary

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge