Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youssef Idaghdour is active.

Publication


Featured researches published by Youssef Idaghdour.


Nature Genetics | 2011

Variation in genome-wide mutation rates within and between human families.

Donald F. Conrad; Jonathan E. M. Keebler; Mark A. DePristo; Sarah J. Lindsay; Yujun Zhang; Ferran Casals; Youssef Idaghdour; Chris Hartl; Carlos Torroja; Kiran Garimella; Martine Zilversmit; Reed A. Cartwright; Guy A. Rouleau; Mark J. Daly; Eric A. Stone

J.B.S. Haldane proposed in 1947 that the male germline may be more mutagenic than the female germline. Diverse studies have supported Haldanes contention of a higher average mutation rate in the male germline in a variety of mammals, including humans. Here we present, to our knowledge, the first direct comparative analysis of male and female germline mutation rates from the complete genome sequences of two parent-offspring trios. Through extensive validation, we identified 49 and 35 germline de novo mutations (DNMs) in two trio offspring, as well as 1,586 non-germline DNMs arising either somatically or in the cell lines from which the DNA was derived. Most strikingly, in one family, we observed that 92% of germline DNMs were from the paternal germline, whereas, in contrast, in the other family, 64% of DNMs were from the maternal germline. These observations suggest considerable variation in mutation rates within and between families.


Nature Genetics | 2010

Geographical genomics of human leukocyte gene expression variation in southern Morocco

Youssef Idaghdour; Wendy Czika; Sang Hong Lee; Peter M. Visscher; Hilary C. Martin; K Miclaus; Sami J. Jadallah; David B. Goldstein; Russell D. Wolfinger; Greg Gibson

Studies of the genetics of gene expression can identify expression SNPs (eSNPs) that explain variation in transcript abundance. Here we address the robustness of eSNP associations to environmental geography and population structure in a comparison of 194 Arab and Amazigh individuals from a city and two villages in southern Morocco. Gene expression differed between pairs of locations for up to a third of all transcripts, with notable enrichment of transcripts involved in ribosomal biosynthesis and oxidative phosphorylation. Robust associations were observed in the leukocyte samples: cis eSNPs (P < 10−08) were identified for 346 genes, and trans eSNPs (P < 10−11) for 10 genes. All of these associations were consistent both across the three sample locations and after controlling for ancestry and relatedness. No evidence of large-effect trans-acting mediators of the pervasive environmental influence was found; instead, genetic and environmental factors acted in a largely additive manner.


PLOS Genetics | 2008

A Genome-Wide Gene Expression Signature of Environmental Geography in Leukocytes of Moroccan Amazighs

Youssef Idaghdour; John D. Storey; Sami J. Jadallah; Greg Gibson

The different environments that humans experience are likely to impact physiology and disease susceptibility. In order to estimate the magnitude of the impact of environment on transcript abundance, we examined gene expression in peripheral blood leukocyte samples from 46 desert nomadic, mountain agrarian and coastal urban Moroccan Amazigh individuals. Despite great expression heterogeneity in humans, as much as one third of the leukocyte transcriptome was found to be associated with differences among regions. Genome-wide polymorphism analysis indicates that genetic differentiation in the total sample is limited and is unlikely to explain the expression divergence. Methylation profiling of 1,505 CpG sites suggests limited contribution of methylation to the observed differences in gene expression. Genetic network analysis further implies that specific aspects of immune function are strongly affected by regional factors and may influence susceptibility to respiratory and inflammatory disease. Our results show a strong genome-wide gene expression signature of regional population differences that presumably include lifestyle, geography, and biotic factors, implying that these can play at least as great a role as genetic divergence in modulating gene expression variation in humans.


Journal of Medical Genetics | 2013

Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia

Mark E. Samuels; Jacek Majewski; Najmeh Alirezaie; Isabel Fernandez; Ferran Casals; Natalie Patey; Hélène Decaluwe; Isabelle Gosselin; Elie Haddad; Alan Hodgkinson; Youssef Idaghdour; Valérie Marchand; Jacques L. Michaud; M.-A. Rodrigue; Sylvie Desjardins; Stéphane Dubois; Françoise Le Deist; Vincent Raymond; Bruno Maranda

Background Congenital multiple intestinal atresia (MIA) is a severe, fatal neonatal disorder, involving the occurrence of obstructions in the small and large intestines ultimately leading to organ failure. Surgical interventions are palliative but do not provide long-term survival. Severe immunodeficiency may be associated with the phenotype. A genetic basis for MIA is likely. We had previously ascertained a cohort of patients of French-Canadian origin, most of whom were deceased as infants or in utero. The goal of the study was to identify the molecular basis for the disease in the patients of this cohort. Methods We performed whole exome sequencing on samples from five patients of four families. Validation of mutations and familial segregation was performed using standard Sanger sequencing in these and three additional families with deceased cases. Exon skipping was assessed by reverse transcription-PCR and Sanger sequencing. Results Five patients from four different families were each homozygous for a four base intronic deletion in the gene TTC7A, immediately adjacent to a consensus GT splice donor site. The deletion was demonstrated to have deleterious effects on splicing causing the skipping of the attendant upstream coding exon, thereby leading to a predicted severe protein truncation. Parents were heterozygous carriers of the deletion in these families and in two additional families segregating affected cases. In a seventh family, an affected case was compound heterozygous for the same 4bp deletion and a second missense mutation p.L823P, also predicted as pathogenic. No other sequenced genes possessed deleterious variants explanatory for all patients in the cohort. Neither mutation was seen in a large set of control chromosomes. Conclusions Based on our genetic results, TTC7A is the likely causal gene for MIA.


International Journal of Epidemiology | 2013

Cohort profile of the CARTaGENE study: Quebec's population-based biobank for public health and personalized genomics.

Catherine Boileau; Yves Payette; Youssef Idaghdour; Jean-Philippe Goulet; Bartha Maria Knoppers; P. Hamet; Claude Laberge

The CARTaGENE (CaG) study is both a population-based biobank and the largest ongoing prospective health study of men and women in Quebec. In population-based cohorts, participants are not recruited for a particular disease but represent a random selection among the population, minimizing the need to correct for bias in measured phenotypes. CaG targeted the segment of the population that is most at risk of developing chronic disorders, that is 40-69 years of age, from four metropolitan areas in Quebec. Over 20,000 participants consented to visiting 1 of 12 assessment sites where detailed health and socio-demographic information, physiological measures and biological samples (blood, serum and urine) were captured for a total of 650 variables. Significant correlations of diseases and chronic conditions are observed across these regions, implicating complex interactions, some of which we describe for major chronic conditions. The CaG study is one of the few population-based cohorts in the world where blood is stored not only for DNA and protein based science but also for gene expression analyses, opening the door for multiple systems genomics approaches that identify genetic and environmental factors associated with disease-related quantitative traits. Interested researchers are encouraged to submit project proposals on the study website (www.cartagene.qc.ca).


PLOS Neglected Tropical Diseases | 2013

Association between Response to Albendazole Treatment and β-Tubulin Genotype Frequencies in Soil-transmitted Helminths

Aı̈ssatou Diawara; Carli M. Halpenny; Thomas S. Churcher; Charles Mwandawiro; Jimmy H. Kihara; Ray M. Kaplan; Thomas G. Streit; Youssef Idaghdour; Marilyn E. Scott; María-Gloria Basáñez; Roger K. Prichard

Background Albendazole (ABZ), a benzimidazole (BZ) anthelmintic (AH), is commonly used for treatment of soil-transmitted helminths (STHs). Its regular use increases the possibility that BZ resistance may develop, which, in veterinary nematodes is caused by single nucleotide polymorphisms (SNPs) in the β-tubulin gene at positions 200, 167 or 198. The relative importance of these SNPs varies among the different parasitic nematodes of animals studied to date, and it is currently unknown whether any of these are influencing BZ efficacy against STHs in humans. We assessed ABZ efficacy and SNP frequencies before and after treatment of Ascaris lumbricoides, Trichuris trichiura and hookworm infections. Methods Studies were performed in Haiti, Kenya, and Panama. Stool samples were examined prior to ABZ treatment and two weeks (Haiti), one week (Kenya) and three weeks (Panama) after treatment to determine egg reduction rate (ERR). Eggs were genotyped and frequencies of each SNP assessed. Findings In T. trichiura, polymorphism was detected at codon 200. Following treatment, there was a significant increase, from 3.1% to 55.3%, of homozygous resistance-type in Haiti, and from 51.3% to 67.8% in Kenya (ERRs were 49.7% and 10.1%, respectively). In A. lumbricoides, a SNP at position 167 was identified at high frequency, both before and after treatment, but ABZ efficacy remained high. In hookworms from Kenya we identified the resistance-associated SNP at position 200 at low frequency before and after treatment while ERR values indicated good drug efficacy. Conclusion Albendazole was effective for A. lumbricoides and hookworms. However, ABZ exerts a selection pressure on the β-tubulin gene at position 200 in T. trichiura, possibly explaining only moderate ABZ efficacy against this parasite. In A. lumbricoides, the codon 167 polymorphism seemed not to affect drug efficacy whilst the polymorphism at codon 200 in hookworms was at such low frequency that conclusions cannot be drawn.


Science | 2014

High-Resolution Genomic Analysis of Human Mitochondrial RNA Sequence Variation

Alan Hodgkinson; Youssef Idaghdour; Elias Gbeha; Jean-Christophe Grenier; Elodie Hip-Ki; Vanessa Bruat; Jean-Philippe Goulet; Thibault de Malliard

RNA Heteroplasmy Like nuclear DNA, the mitochondrial genome has to be posttranscriptionally modified to function properly; however, among individuals, mitochondrial RNA (mtRNA) transcripts vary in ways that are poorly understood. Hodgkinson et al. (p. 413) looked at mtRNA editing events and posttranscriptional methylation in more than 700 individuals. Interestingly, variation at the ninth position within transfer RNAs showed a high frequency of variation that, in some cases, is genetically attributable. Mitochondrial posttranscriptional variation is common among humans and can be attributed to a nuclear gene. Mutations in the mitochondrial genome are associated with multiple diseases and biological processes; however, little is known about the extent of sequence variation in the mitochondrial transcriptome. By ultra-deeply sequencing mitochondrial RNA (>6000×) from the whole blood of ~1000 individuals from the CARTaGENE project, we identified remarkable levels of sequence variation within and across individuals, as well as sites that show consistent patterns of posttranscriptional modification. Using a genome-wide association study, we find that posttranscriptional modification of functionally important sites in mitochondrial transfer RNAs (tRNAs) is under strong genetic control, largely driven by a missense mutation in MRPP3 that explains ~22% of the variance. These results reveal a major nuclear genetic determinant of posttranscriptional modification in mitochondria and suggest that tRNA posttranscriptional modification may affect cellular energy production.


PLOS Genetics | 2013

Blood-Informative Transcripts Define Nine Common Axes of Peripheral Blood Gene Expression

Marcela K. Preininger; Dalia Arafat; Jinhee Kim; Artika P. Nath; Youssef Idaghdour; Kenneth L. Brigham; Greg Gibson

We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB) cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as “Blood Informative Transcripts” (BITs), generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Evidence for additive and interaction effects of host genotype and infection in malaria

Youssef Idaghdour; Jacklyn Quinlan; Jean-Philippe Goulet; Joanne Berghout; Elias Gbeha; Vanessa Bruat; Thibault de Malliard; Jean-Christophe Grenier; Selma Gomez; Philippe Gros; Mohamed Chérif Rahimy; Ambaliou Sanni

The host mechanisms responsible for protection against malaria remain poorly understood, with only a few protective genetic effects mapped in humans. Here, we characterize a host-specific genome-wide signature in whole-blood transcriptomes of Plasmodium falciparum-infected West African children and report a demonstration of genotype-by-infection interactions in vivo. Several associations involve transcripts sensitive to infection and implicate complement system, antigen processing and presentation, and T-cell activation (i.e., SLC39A8, C3AR1, FCGR3B, RAD21, RETN, LRRC25, SLC3A2, and TAPBP), including one association that validated a genome-wide association candidate gene (SCO1), implicating binding variation within a noncoding regulatory element. Gene expression profiles in mice infected with Plasmodium chabaudi revealed and validated similar responses and highlighted specific pathways and genes that are likely important responders in both hosts. These results suggest that host variation and its interplay with infection affect children’s ability to cope with infection and suggest a polygenic model mounted at the transcriptional level for susceptibility.


PLOS Genetics | 2013

Whole-Exome Sequencing Reveals a Rapid Change in the Frequency of Rare Functional Variants in a Founding Population of Humans

Ferran Casals; Alan Hodgkinson; Julie Hussin; Youssef Idaghdour; Vanessa Bruat; Thibault de Maillard; Jean-Cristophe Grenier; Elias Gbeha; Fadi F. Hamdan; Simon Girard; Jean François Spinella; Mathieu Larivière; Virginie Saillour; Jasmine Healy; Isabel Fernandez; Daniel Sinnett; Jacques L. Michaud; Guy A. Rouleau; Elie Haddad; Françoise Le Deist

Whole-exome or gene targeted resequencing in hundreds to thousands of individuals has shown that the majority of genetic variants are at low frequency in human populations. Rare variants are enriched for functional mutations and are expected to explain an important fraction of the genetic etiology of human disease, therefore having a potential medical interest. In this work, we analyze the whole-exome sequences of French-Canadian individuals, a founder population with a unique demographic history that includes an original population bottleneck less than 20 generations ago, followed by a demographic explosion, and the whole exomes of French individuals sampled from France. We show that in less than 20 generations of genetic isolation from the French population, the genetic pool of French-Canadians shows reduced levels of diversity, higher homozygosity, and an excess of rare variants with low variant sharing with Europeans. Furthermore, the French-Canadian population contains a larger proportion of putatively damaging functional variants, which could partially explain the increased incidence of genetic disease in the province. Our results highlight the impact of population demography on genetic fitness and the contribution of rare variants to the human genetic variation landscape, emphasizing the need for deep cataloguing of genetic variants by resequencing worldwide human populations in order to truly assess disease risk.

Collaboration


Dive into the Youssef Idaghdour's collaboration.

Top Co-Authors

Avatar

Elias Gbeha

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Greg Gibson

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanessa Bruat

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferran Casals

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Julie Hussin

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Burt

New York University Abu Dhabi

View shared research outputs
Researchain Logo
Decentralizing Knowledge