Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youssef M. Marzouk is active.

Publication


Featured researches published by Youssef M. Marzouk.


Journal of Computational Physics | 2007

Stochastic spectral methods for efficient Bayesian solution of inverse problems

Youssef M. Marzouk; Habib N. Najm; Larry A. Rahn

We present a reformulation of the Bayesian approach to inverse problems, that seeks to accelerate Bayesian inference by using polynomial chaos (PC) expansions to represent random variables. Evaluation of integrals over the unknown parameter space is recast, more efficiently, as Monte Carlo sampling of the random variables underlying the PC expansion. We evaluate the utility of this technique on a transient diffusion problem arising in contaminant source inversion. The accuracy of posterior estimates is examined with respect to the order of the PC representation, the choice of PC basis, and the decomposition of the support of the prior. The computational cost of the new scheme shows significant gains over direct sampling.


Journal of Computational Physics | 2009

Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems

Youssef M. Marzouk; Habib N. Najm

We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a spatial or temporal field, endowed with a hierarchical Gaussian process prior. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of Markov chain Monte Carlo) and are compounded by high dimensionality of the posterior. We address these challenges by introducing truncated Karhunen-Loeve expansions, based on the prior distribution, to efficiently parameterize the unknown field and to specify a stochastic forward problem whose solution captures that of the deterministic forward model over the support of the prior. We seek a solution of this problem using Galerkin projection on a polynomial chaos basis, and use the solution to construct a reduced-dimensionality surrogate posterior density that is inexpensive to evaluate. We demonstrate the formulation on a transient diffusion equation with prescribed source terms, inferring the spatially-varying diffusivity of the medium from limited and noisy data.


Journal of Computational Physics | 2013

Simulation-based optimal Bayesian experimental design for nonlinear systems

Xun Huan; Youssef M. Marzouk

The optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models; in particular, we focus on finding sets of experiments that provide the most information about targeted sets of parameters. Our framework employs a Bayesian statistical setting, which provides a foundation for inference from noisy, indirect, and incomplete data, and a natural mechanism for incorporating heterogeneous sources of information. An objective function is constructed from information theoretic measures, reflecting expected information gain from proposed combinations of experiments. Polynomial chaos approximations and a two-stage Monte Carlo sampling method are used to evaluate the expected information gain. Stochastic approximation algorithms are then used to make optimization feasible in computationally intensive and high-dimensional settings. These algorithms are demonstrated on model problems and on nonlinear parameter inference problems arising in detailed combustion kinetics.


Journal of Computational Physics | 2012

Bayesian inference with optimal maps

Tarek Moselhy; Youssef M. Marzouk

We present a new approach to Bayesian inference that entirely avoids Markov chain simulation, by constructing a map that pushes forward the prior measure to the posterior measure. Existence and uniqueness of a suitable measure-preserving map is established by formulating the problem in the context of optimal transport theory. We discuss various means of explicitly parameterizing the map and computing it efficiently through solution of an optimization problem, exploiting gradient information from the forward model when possible. The resulting algorithm overcomes many of the computational bottlenecks associated with Markov chain Monte Carlo. Advantages of a map-based representation of the posterior include analytical expressions for posterior moments and the ability to generate arbitrary numbers of independent posterior samples without additional likelihood evaluations or forward solves. The optimization approach also provides clear convergence criteria for posterior approximation and facilitates model selection through automatic evaluation of the marginal likelihood. We demonstrate the accuracy and efficiency of the approach on nonlinear inverse problems of varying dimension, involving the inference of parameters appearing in ordinary and partial differential equations.


SIAM Journal on Scientific Computing | 2013

Adaptive Smolyak Pseudospectral Approximations

Patrick R. Conrad; Youssef M. Marzouk

Polynomial approximations of computationally intensive models are central to uncertainty quantification. This paper describes an adaptive method for non-intrusive pseudospectral approximation, based on Smolyaks algorithm with generalized sparse grids. We rigorously analyze and extend the non-adaptive method proposed in [6], and compare it to a common alternative approach for using sparse grids to construct polynomial approximations, direct quadrature. Analysis of direct quadrature shows that O(1) errors are an intrinsic property of some configurations of the method, as a consequence of internal aliasing. We provide precise conditions, based on the chosen polynomial basis and quadrature rules, under which this aliasing error occurs. We then establish theoretical results on the accuracy of Smolyak pseudospectral approximation, and show that the Smolyak approximation avoids internal aliasing and makes far more effective use of sparse function evaluations. These results are applicable to broad choices of quadrature rule and generalized sparse grids. Exploiting this flexibility, we introduce a greedy heuristic for adaptive refinement of the pseudospectral approximation. We numerically demonstrate convergence of the algorithm on the Genz test functions, and illustrate the accuracy and efficiency of the adaptive approach on a realistic chemical kinetics problem.


Proceedings of the Combustion Institute | 2000

Dynamic Response of Strained Premixed Flames to Equivalence Ratio Gradients

Youssef M. Marzouk; Ahmed F. Ghoniem; Habib N. Najm

Premixed flames encounter gradients of mixture equivalence ratio in stratified charge engines, lean premixed gas-turbine engines, and a variety of other applications. In cases for which the scales—spatial or temporal—of fuel concentration gradients in the reactants are comparable to flame scales, changes in burning rate, flammability limits, and flame structure have been observed. This paper uses an unsteady strained flame in the stagnation point configuration to examine the effect of temporal gradients on combustion in a premixed methane/air mixture. An inexact Newton backtracking method, coupled with a preconditioned Krylov subspace iterative solver, was used to improve the efficiency of the numerical solution and expand its domain of convergence in the presence of detailed chemistry. Results indicate that equivalence ratio variations with timescales lower than 10 ms have significant effects on the burning process, including reaction zone broadening, burning rate enhancement, and extension of the flammability limit toward learner mixtures. While the temperature of a flame processing a stoichiometric-to-lean equivalence ratio gradient decreased slightly within the front side of the reaction zone, radical concentrations remained elevated over the entire flame structure. These characteristics are linked to a feature reminiscent of “back-supported” flames—flames in which a stream of products resulting from burning at higher equivalence ratio is continuously supplied to lower equivalence ratio reactants. The relevant feature is the establishment of a positive temperature gradient on the products side of the flame which maintains the temperature high enough and the radical concentration sufficient to sustain combustion there. Unsteadiness in equivalence ratio produces similar gradients within the flame structure, thus compensating for the change in temperature at the leading edge of the reaction zone and accounting for an observed “flame inertia”. For sufficiently large equivalence ratio gradients, a flame starting in a stoichiometric mixture can burn through a very lean one by taking advantage of this mechanism.


Inverse Problems | 2014

Likelihood-informed dimension reduction for nonlinear inverse problems

Tiangang Cui; James F. Martin; Youssef M. Marzouk; Antti Solonen; Alessio Spantini

United States. Dept. of Energy. Office of Advanced Scientific Computing Research (Grant DE-SC0003908)


Journal of Fluid Mechanics | 2007

Vorticity structure and evolution in a transverse jet

Youssef M. Marzouk; Ahmed F. Ghoniem

Transverse jets arise in many applications, including propulsion, effluent dispersion, oil field flows, and V/STOL aerodynamics. This study seeks a fundamental, mechanistic understanding of the structure and evolution of vorticity in the transverse jet. We develop a high-resolution three-dimensional vortex simulation of the transverse jet at large Reynolds number and consider jet-to-crossflow velocity ratios r ranging from 5 to 10. A new formulation of vorticity-flux boundary conditions accounts for the interaction of channel wall vorticity with the jet flow immediately around the orifice. We demonstrate that the nascent jet shear layer contains not only azimuthal vorticity generated in the jet pipe, but wall-normal and azimuthal perturbations resulting from the jet–crossflow interaction. This formulation also yields analytical expressions for vortex lines in the near field as a function of r . Transformation of the cylindrical shear layer emanating from the orifice begins with axial elongation of its lee side to form sections of counter-rotating vorticity aligned with the jet trajectory. Periodic roll-up of the shear layer accompanies this deformation, creating complementary vortex arcs on the lee and windward sides of the jet. Counter-rotating vorticity then drives lee-side roll-ups in the windward direction, along the normal to the jet trajectory. Azimuthal vortex arcs of alternating sign thus approach each other on the windward boundary of the jet. Accordingly, initially planar material rings on the shear layer fold completely and assume an interlocking structure that persists for several diameters above the jet exit. Though the near field of the jet is dominated by deformation and periodic roll-up of the shear layer, the resulting counter-rotating vorticity is a pronounced feature of the mean field; in turn, the mean counter-rotation exerts a substantial influence on the deformation of the shear layer. Following the pronounced bending of the trajectory into the crossflow, we observe a sudden breakdown of near-field vortical structures into a dense distribution of smaller scales. Spatial filtering of this region reveals the persistence of counter-rotating streamwise vorticity initiated in the near field.


International Journal for Numerical Methods in Engineering | 2015

Data‐driven model reduction for the Bayesian solution of inverse problems

Tiangang Cui; Youssef M. Marzouk; Karen Willcox

United States. Dept. of Energy. Office of Advanced Scientific Computing Research (Applied Mathematics Program Award DE-FG02-08ER2585)


Journal of Computational Physics | 2016

Dimension-independent likelihood-informed MCMC

Tiangang Cui; Kody J. H. Law; Youssef M. Marzouk

Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters that represent the discretization of an underlying function. This work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. Two distinct lines of research intersect in the methods developed here. First, we introduce a general class of operator-weighted proposal distributions that are well defined on function space, such that the performance of the resulting MCMC samplers is independent of the discretization of the function. Second, by exploiting local Hessian information and any associated low-dimensional structure in the change from prior to posterior distributions, we develop an inhomogeneous discretization scheme for the Langevin stochastic differential equation that yields operator-weighted proposals adapted to the non-Gaussian structure of the posterior. The resulting dimension-independent and likelihood-informed (DILI) MCMC samplers may be useful for a large class of high-dimensional problems where the target probability measure has a density with respect to a Gaussian reference measure. Two nonlinear inverse problems are used to demonstrate the efficiency of these DILI samplers: an elliptic PDE coefficient inverse problem and path reconstruction in a conditioned diffusion.

Collaboration


Dive into the Youssef M. Marzouk's collaboration.

Top Co-Authors

Avatar

Ahmed F. Ghoniem

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Habib N. Najm

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Jaideep Ray

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Tiangang Cui

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean Andrew McKenna

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Bert J. Debusschere

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Karen Willcox

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alessio Spantini

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alex A. Gorodetsky

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge