Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youssef Sari is active.

Publication


Featured researches published by Youssef Sari.


Neuroscience & Biobehavioral Reviews | 2004

Serotonin1B receptors: from protein to physiological function and behavior

Youssef Sari

The serotonin (5-HT)1B receptor is expressed in the central nervous system (CNS) of rodents and its homologous 5-HT1D beta receptor is expressed in human. These receptors are distributed in both serotonergic and non-serotonergic neurons, where they act as auto- or heteroreceptors, respectively. Studies from ours and other laboratories have shown that 5-HT1B receptors are densely expressed in the ventral pallidum, globus pallidus, substantia nigra and dorsal subiculum and moderately expressed in the cerebral cortex, the molecular layer of the hippocampus, the entopeduncular nucleus, the superficial gray layer of the superior colliculus, the caudate putamen and the deep nuclei of the cerebellum. At the ultrastructural level, 5-HT1B receptors were found distributed in axons and axon terminals and these receptors are located on the plasma membrane of unmyelinated axon terminals and in the cytoplasm close to the plasmalemma. The terminal localization of the 5-HT1B receptors in CNS suggests that there is a signal responsible for the protein transport toward the nerve terminals. Studies from ours and other groups using lesion, radioligand binding sites, viral transfection and anterograde methods have shown that 5-HT1B receptors are located at the nerve terminals of different pathways. The 5-HT1B receptors act as terminal receptors and are involved in regulation of the release of various neurotransmitters, including 5-HT itself. The regulation of gamma-aminobutyric acid release by 5-HT1B receptors has been found in projections: from caudate putamen to the globus pallidus or substantia nigra, from nucleus accumbens to the ventral tegmentum area, and from purkinje neurons to the deep nuclei of the cerebellum. The control of glutamate release by 5-HT1B receptors has been found in projections from hippocampus to the dorsal subiculum and of N-acetyl-aspartyl-glutamate release from retinal ganglion cells to the superficial gray layer of the superior colliculus. The control of 5-HT release by 5-HT1B receptors was shown in projections arising from the raphe nuclei to fore- and midbrain regions. Multiple evidences suggest that 5-HT1B receptors are implicated in several physiological functions, behavior and psychiatric diseases including migraine, locomotor activity, drug abuse reinforcement, migraine, aggressive behavior, depression and anxiety states.


Neuroscience | 2008

Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington's disease phenotype in the R6/2 mouse.

Benjamin R. Miller; Jenelle L. Dorner; Minshan Shou; Youssef Sari; Scott J. Barton; Dale R. Sengelaub; Robert T. Kennedy; George V. Rebec

The striatum, which processes cortical information for behavioral output, is a key target of Huntingtons disease (HD), an autosomal dominant condition characterized by cognitive decline and progressive loss of motor control. Increasing evidence implicates deficient glutamate uptake caused by a down-regulation of GLT1, the primary astroglial glutamate transporter. To test this hypothesis, we administered ceftriaxone, a beta-lactam antibiotic known to elevate GLT1 expression (200 mg/kg, i.p., for 5 days), to symptomatic R6/2 mice, a widely studied transgenic model of HD. Relative to vehicle, ceftriaxone attenuated several HD behavioral signs: paw clasping and twitching were reduced, while motor flexibility, as measured in a plus maze, and open-field climbing were increased. Assessment of GLT1 expression in striatum confirmed a ceftriaxone-induced increase relative to vehicle. To determine if the change in behavior and GLT1 expression represented a change in striatal glutamate handling, separate groups of behaving mice were evaluated with no-net-flux microdialysis. Vehicle treatment revealed a glutamate uptake deficit in R6/2 mice relative to wild-type controls that was reversed by ceftriaxone. Vehicle-treated animals, however, did not differ in GLT1 expression, suggesting that the glutamate uptake deficit in R6/2 mice reflects dysfunctional rather than missing GLT1. Our results indicate that impaired glutamate uptake is a major factor underlying HD pathophysiology and symptomology. The glutamate uptake deficit, moreover, is present in symptomatic HD mice and reversal of this deficit by up-regulating the functional expression of GLT1 with ceftriaxone attenuates the HD phenotype.


The Journal of Neuroscience | 2009

Upregulation of Glt1 Attenuates Cue-Induced Reinstatement of Cocaine-Seeking Behavior in Rats

Youssef Sari; Kathryn D. Smith; Pir K. Ali; George V. Rebec

Relapse to cocaine-seeking behavior depends on increased glutamate transmission in key regions of the mesocorticolimbic motive circuit, including prefrontal cortex (PFC) and nucleus accumbens (NAcc). Because GLT1 is responsible for the uptake of ≥90% of extracellular glutamate, we tested the hypothesis that increased GLT1 expression attenuates cocaine relapse. Rats were trained to self-administer cocaine (0.125 mg per intravenous infusion) in a lever-pressing task in a daily 2 h session for 10–14 d followed by 5 d of extinction training. Immediately after each extinction session, rats received ceftriaxone (intraperitoneally), a β-lactam antibiotic believed to increase GLT1 expression, or vehicle. On the following day, presentation of the cue (light and tone) previously associated with cocaine self-administration reinstated lever pressing in rats treated with vehicle, whereas 100 or 200, but not 50 mg/kg ceftriaxone blocked this response. Immunoblotting confirmed that the ceftriaxone-induced blockade of cocaine relapse was associated with an increase in GLT1 expression in both PFC and NAcc. In separate groups of rats, 200 mg/kg ceftriaxone failed to block cue-induced food seeking, arguing against a ceftriaxone-induced effect unique to extinction training or lever pressing. Our results suggest that glutamate plays a key role in cue-induced relapse to cocaine-seeking behavior, implicating GLT1 as a potential therapeutic target for cocaine addiction.


Developmental Brain Research | 2001

Prenatal alcohol exposure retards the migration and development of serotonin neurons in fetal C57BL mice.

Feng C. Zhou; Youssef Sari; J.K. Zhang; Charles R. Goodlett; Ting-Kai Li

Incomplete neural tube fusion (iNTF), induced by alcohol, in midline floor and roof plates was found in our recent study. In this study, serotonin (5-HT) neurons, known to be born entirely in the midline raphe at brainstem, were examined during their development with fetal alcohol exposure. Weight-matched C57BL mice pregnant dams were divided into three groups on E8: one received ethanol via a chocolate Sustacal liquid diet providing 20% ethanol-derived calories as the sole source of nutrients (ALC); the second received an isocaloric Sustacal liquid diet and was pair-fed to individual dams in the ethanol-fed group (PF); the third was fed ad lib rat chow (Chow). Fetal brains were obtained on E15 and were processed for immunostaining of 5-HT and its trophic factor, S100 beta. The ascending 5-HT neurons, in normal development, appear bilaterally near midline on E12, and by E15, as seen in chow and PF groups, migrate from the midline germinal zone laterally and dorsally to their final position with rich fibers. In contrast, in the E15 ALC group, many 5-HT-im neurons were found remaining in the midline germinal region or had migrated, but with under-differentiated, sparse fibers. There were 20--30% fewer 5-HT-im neurons in ALC as compared to PF and Chow. In addition, the number of S100 beta cells was less in ALC as compared with PF and Chow groups. No difference was found between PF and Chow in number of 5-HT-im or S100 beta-im cells. The 5-HT neurons found compromised in migration and differentiation may, in part, stem from failure of access to floor plate or midline tissue induction and the insufficient support by S100 beta. As 5-HT neurons have been implicated for signaling brain maturation, fewer 5-HT neurons may have lasting effects on the development of brain or, if persistent in the adult, profoundly affect adult brain function.


Alcohol and Alcoholism | 2011

Ceftriaxone, a beta-lactam antibiotic, reduces ethanol consumption in alcohol-preferring rats.

Youssef Sari; Makiko Sakai; Jason M. Weedman; George V. Rebec; Richard L. Bell

AIMS Changes in glutamatergic transmission affect many aspects of neuroplasticity associated with ethanol and drug addiction. For instance, ethanol- and drug-seeking behavior is promoted by increased glutamate transmission in key regions of the motive circuit. We hypothesized that because glutamate transporter 1 (GLT1) is responsible for the removal of most extracellular glutamate, up-regulation or activation of GLT1 would attenuate ethanol consumption. METHODS Alcohol-preferring (P) rats were given 24 h/day concurrent access to 15 and 30% ethanol, water and food for 7 weeks. During Week 6, P rats received either 25, 50, 100 or 200 mg/kg ceftriaxone (CEF, i.p.), a β-lactam antibiotic known to elevate GLT1 expression, or a saline vehicle for five consecutive days. Water intake, ethanol consumption and body weight were measured daily for 15 days starting on Day 1 of injections. We also tested the effects of CEF (100 and 200 mg/kg, i.p.) on daily sucrose (10%) consumption as a control for motivated behavioral drinking. RESULTS Statistical analyses revealed a significant reduction in daily ethanol, but not sucrose, consumption following CEF treatment. During the post treatment period, there was a recovery of ethanol intake across days. Dose-dependent increases in water intake were manifest concurrent with the CEF-induced decreases in ethanol intake. Nevertheless, CEF did not affect body weight. An examination of a subset of the CEF-treated ethanol-drinking rats, on the third day post CEF treatment, revealed increases in GTL1 expression levels within the prefrontal cortex and nucleus accumbens. CONCLUSIONS These results indicate that CEF effectively reduces ethanol intake, possibly through activation of GLT1, and may be a potential therapeutic drug for alcohol addiction treatment.


International Journal of Developmental Neuroscience | 2003

Serotonin and its transporter on proliferation of fetal heart cells

Youssef Sari; Feng C. Zhou

Besides neuronal transmission, serotonin (5‐HT) also acts as a trophic signal during the development of the central nervous and neural crest systems. In this study, we report that in addition to trophic effect, 5‐HT increases the proliferation of fetal heart cells. We showed for the first time that the cultured heart cells, express serotonin transporter (5‐HTT), which confirmed the previously observed accumulation of 5‐HT in developing heart. The influence of 5‐HT on developing heart cells is studied throughout the dosage. We found that 5‐HT concentration at physiological level, 4 μM, permits an optimal proliferation of heart cells as indicated by the number of 5‐bromo‐deoxyuridine immunoreactive (BrdU‐im) cells and myosin heavy chain immunoreactive cells (MF20‐im); fluctuation towards either concentrations reduce the proliferation. We hypothesized that 5‐HTT plays a role in the heart development. Our study indicated that the blockade of 5‐HT uptake by paroxetine decreased the number of BrdU‐im cells and MF20‐im cells. These data indicate a role of 5‐HT and 5‐HTT on heart development. Abnormal 5‐HT level or misuse of 5‐HT uptake blocker may alter the heart development.


Alcoholism: Clinical and Experimental Research | 2004

Prenatal Alcohol Exposure Causes Long‐Term Serotonin Neuron Deficit in Mice

Youssef Sari; Feng C. Zhou

BACKGROUND Previous work from this laboratory showed that prenatal alcohol exposure at approximately 100 mg/dl from embryonic day (E)7 to early midgestation reduced the number and retarded the migration of serotonin (5-HT) neurons in the raphe nuclei in C57BL/6 mice. In this study, we report that the deficit of 5-HT neurons found in midgestation persisted on E18 and into young adulthood. METHODS Pregnant dams were treated from E7 to E18 in three groups--(1) the alcohol group, fed with liquid diet with 25% ethanol-derived calories; (2) the isocaloric pair-fed group; and (3) the chow group for analysis of concentrations of active caspase-3--to study apoptosis at E18 in the brainstem and the number of 5-HT neurons at E18 and postnatal day 45. The concentrations of active caspase-3 were determined by using a colorimetric assay, and the 5-HT neurons were determined by immunocytochemistry. RESULTS Prenatal alcohol exposure increased the concentration of active caspase-3 in the brainstem and caused reductions in brain weight by 20% and in the total number of 5-HT-immunostaining neurons in the dorsal and median raphe nuclei by 20% at E18 as compared with those of the pair-fed and chow controls. Continuous observation from prenatal to postnatal stages showed that the reduction of 5-HT-immunostaining neurons in the dorsal and median raphe nuclei persisted in the young adult stage. CONCLUSIONS Upon prenatal alcohol exposure, an increased concentration of active caspase-3 and a decreased number of 5-HT-immunostaining neurons in the brainstem were observed at E18. The decreased number of 5-HT neurons persisted to the young adult stage of postnatal day 45. This suggests that ethanol has a long-lasting effect on 5-HT deficit. A fetal alcohol exposure-rendered lasting deficit of 5-HT and other transmitter systems may underlie the neuropsychiatric deficits in fetal alcohol spectrum disorder.


Journal of Biomedical Science | 2010

Ceftriaxone-induced up-regulation of cortical and striatal GLT1 in the R6/2 model of Huntington's disease

Youssef Sari; Anne L. Prieto; Scott J. Barton; Benjamin R. Miller; George V. Rebec

BackgroundHuntingtons disease (HD) is an inherited neurodegenerative disorder characterized by cortico-striatal dysfunction and loss of glutamate uptake. At 7 weeks of age, R6/2 mice, which model an aggressive form of juvenile HD, show a glutamate-uptake deficit in striatum that can be reversed by treatment with ceftriaxone, a β-lactam antibiotic that increases GLT1 expression. Only at advanced ages (> 11 weeks), however, do R6/2 mice show an actual loss of striatal GLT1. Here, we tested whether ceftriaxone can reverse the decline in GLT1 expression that occurs in older R6/2s.ResultsWestern blots were used to assess GLT1 expression in both striatum and cerebral cortex in R6/2 and corresponding wild-type (WT) mice at 9 and 13 weeks of age. Mice were euthanized for immunoblotting 24 hr after five consecutive days of once daily injections (ip) of ceftriaxone (200 mg/kg) or saline vehicle. Despite a significant GLT1 reduction in saline-treated R6/2 mice relative to WT at 13, but not 9, weeks of age, ceftriaxone treatment increased cortical and striatal GLT1 expression relative to saline in all tested mice.ConclusionsThe ability of ceftriaxone to up-regulate GLT1 in R6/2 mice at an age when GLT1 expression is significantly reduced suggests that the mechanism for increasing GLT1 expression is still functional. Thus, ceftriaxone could be effective in modulating glutamate transmission even in late-stage HD.


Alcoholism: Clinical and Experimental Research | 2005

Fetal alcohol exposure reduces serotonin innervation and compromises development of the forebrain along the serotonergic pathway

Feng C. Zhou; Youssef Sari; Teresa A. Powrozek

BACKGROUND We reported previously that a moderate level of fetal alcohol treatment reduces the birth, maturation, and migration of serotonin (5-HT) neurons at embryonic days 11 to 15 (E11-E15). Because 5-HT is known as a differentiation signal for forebrain development, we investigated whether alcohol affects 5-HT innervation to the developing brain and how the target brain areas grow as they receive 5-HT innervation between E15 and E18. METHODS Pregnant dams were divided into three groups and treated from E7 to E15 or E18 with one of the following conditions: (1) liquid diet that contained 25% ethanol-derived calories (ALC), (2) isocaloric liquid diet pair-fed (PF), or (3) chow fed (Chow). The 5-HT immunostained (5-HT-IM) fibers and size of brain areas were examined as an index of growth along the ascending 5-HT pathway. RESULT We found that 5-HT-IM fibers innervate the brain regions specifically under active differentiation and that there were three sets of correlated dysmorphology in the ALC group as compared with those of the PF and Chow groups. The three sets are as follows: (1) fewer 5-HT-IM fibers in the medial forebrain bundle and along the projecting pathway through the hypothalamus, septal nucleus, frontal and parietal cortices, and subiculum/hippocampus; (2) underdevelopment of the brain regions along 5-HT fiber projections; and (3) underdevelopment of somatosensory thalamocortical projections, which are known to transiently express 5-HT transporters and to be regulated by 5-HT. No such differences were found between the PF and Chow groups. CONCLUSION We found that fewer 5-HT fibers grew in the embryos that were exposed to alcohol. As forebrain regions differentiated along the 5-HT projection, we found two reductions: (1) the growth of brain regions along 5-HT projection and (2) the growth of the thalamocortical sensory projection regulated by 5-HT. The reduced 5-HT innervation is in agreement with our previous observation of fewer 5-HT neurons. The subsequent retardation of forebrain growth and sensory thalamocortical fibers along the pathway of reduced 5-HT projection is consistent with the role of 5-HT as a signal for forebrain differentiation.


Neuroscience | 2012

Neuroimmunophilin GPI-1046 reduces ethanol consumption in part through activation of GLT1 in alcohol-preferring rats

Youssef Sari; S.N. Sreemantula

We have previously shown that ceftriaxone, β-lactam antibiotic known to upregulate glutamate transporter 1 (GLT1), reduced ethanol intake in alcohol-preferring (P) rats. GLT1 is a glial glutamate transporter that regulates the majority of extracellular glutamate uptake. We tested in this study the effects of neuroimmunophilin GPI-1046 (3-(3-pyridyl)-1-propyl (2S)-1-(3,3-dimethyl-1,2-dioxopentyl)-2-pyrrolidinecarboxylate), known also to upregulate GLT1 expression, in ethanol intake in P rats. Male P rats had concurrent access to free choice of 15% and 30% ethanol, water, and food for five weeks. On Week 6, P rats continued in this drinking and food regimen and they were administered either 10 or 20mg/kg GPI-1046 (i.p.), or a vehicle for five consecutive days. Body weight, ethanol intake, and water consumption were measured daily for 8 days starting on Day 1 of GPI-1046 or vehicle i.p. injections. We have also tested the effect of GPI-1046 (20mg/kg) on daily sucrose (10%) intake. The data revealed significant dose-dependent effects in the reduction of ethanol intake starting 48 h after the first treatment with GPI-1046 throughout treatment and post-treatment periods. There were also dose-dependent increases in water intake. However, GPI-1046 treatment did not affect the body weight of all animals nor sucrose intake. Importantly, GPI-1046 (20mg/kg) increased GLT1 level compared to all groups in nucleus accumbens core (NAc-core). Alternatively, GPI-1046 (10mg/kg) upregulated GLT1 level in NAc-core compared to vehicle (ethanol naïve) group. Moreover, both doses of GPI-1046 increased significantly GLT1 level in the prefrontal cortex (PFC) compared to ethanol naïve vehicle group. GPI-1046 (20mg/kg) increased GLT1 level in PFC compared to naïve control group that was exposed to water and food only. These findings demonstrated that neuroimmunophilin GPI-1046 attenuates ethanol intake in part through the upregulation of GLT1 in PFC and NAc-core.

Collaboration


Dive into the Youssef Sari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P.S.S. Rao

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George V. Rebec

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Jason M. Weedman

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge