Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youyan Zhang is active.

Publication


Featured researches published by Youyan Zhang.


Journal of Biological Chemistry | 2002

Phospholipid Transfer Protein Is Regulated by Liver X Receptors in Vivo

Guoqing Cao; Thomas P. Beyer; Xiao Ping Yang; Robert J. Schmidt; Youyan Zhang; William R. Bensch; Raymond F. Kauffman; Hong Gao; Timothy P. Ryan; Yu Liang; Patrick I. Eacho; Xian-Cheng Jiang

Liver X receptors (LXR) belong to the nuclear receptor superfamily that can regulate important lipid metabolic pathways. The plasma phospholipid transfer protein (PLTP) is known to mediate transfer of phospholipids from triglyceride-rich lipoproteins to high density lipoprotein (HDL) and plays a critical role in HDL metabolism. We report here that a specific LXR agonist, T0901317, elevated HDL cholesterol and phospholipid in C57/BL6 mice and generated enlarged HDL particles that were enriched in cholesterol, ApoAI, ApoE, and phospholipid. The appearance of these HDL particles upon oral dosing of T0901317 in C57/BL6 mice was closely correlated with the increased plasma PLTP activity and liver PLTP mRNA levels. Nuclear run-on assay indicated that the effect of LXR agonist on PLTP expression was at the transcriptional level. In mouse peritoneal macrophage cells, PLTP expression was also up-regulated by the LXR/RXR (retinoid X receptor) heterodimer. However, cholesterol efflux in mouse peritoneal macrophage cells from PLTP-deficient mice (PLTP0) was not significantly different from wild type animals. Although in PLTP-deficient mice, the induction of HDL cholesterol as well as HDL particle size increase persisted, the extent of the induction was greatly attenuated. We conclude that PLTP is a direct target gene of LXRs in vivo and plays an important role in LXR agonist-mediated HDL cholesterol and size increase in mice.


Journal of Lipid Research | 2007

Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis

Yue-Wei Qian; Robert J. Schmidt; Youyan Zhang; Shaoyou Chu; Aimin Lin; He Wang; Xiliang Wang; Thomas P. Beyer; William R. Bensch; Weiming Li; Mariam E. Ehsani; Deshun Lu; Robert J. Konrad; Patrick I. Eacho; David E. Moller; Sotirios K. Karathanasis; Guoqing Cao

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease that regulates low density lipoprotein receptor (LDLR) protein levels. The mechanisms of this action, however, remain to be defined. We show here that recombinant human PCSK9 expressed in HEK293 cells was readily secreted into the medium, with the prosegment associated with the C-terminal domain. Secreted PCSK9 mediated cell surface LDLR degradation in a concentration- and time-dependent manner when added to HEK293 cells. Accordingly, cellular LDL uptake was significantly reduced as well. When infused directly into C57B6 mice, purified human PCSK9 substantially reduced hepatic LDLR protein levels and resulted in increased plasma LDL cholesterol. When added to culture medium, fluorescently labeled PCSK9 was endocytosed and displayed endosomal-lysosomal intracellular localization in HepG2 cells, as was demonstrated by colocalization with DiI-LDL. PCSK9 endocytosis was mediated by LDLR as LDLR deficiency (hepatocytes from LDLR null mice), or RNA interference-mediated knockdown of LDLR markedly reduced PCSK9 endocytosis. In addition, RNA interference knockdown of the autosomal recessive hypercholesterolemia (ARH) gene product also significantly reduced PCSK9 endocytosis. Biochemical analysis revealed that the LDLR extracellular domain interacted directly with secreted PCSK9; thus, overexpression of the LDLR extracellular domain was able to attenuate the reduction of cell surface LDLR levels by secreted PCSK9. Together, these results reveal that secreted PCSK9 retains biological activity, is able to bind directly to the LDLR extracellular domain, and undergoes LDLR-ARH-mediated endocytosis, leading to accelerated intracellular degradation of the LDLR.


Journal of Neurochemistry | 2004

A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes

Yu Liang; Suizhen Lin; Thomas P. Beyer; Youyan Zhang; Xin Wu; Kelly R. Bales; Ronald B. DeMattos; Patrick C. May; Shuyu Dan Li; Xian-Cheng Jiang; Patrick I. Eacho; Guoqing Cao; Steven M. Paul

Apolipoprotein E (apoE) is an important protein involved in lipoprotein clearance and cholesterol redistribution. ApoE is abundantly expressed in astrocytes in the brain and is closely linked to the pathogenesis of Alzheimers disease (AD). We report here that small molecule ligands that activate either liver X receptors (LXR) or retinoid X receptor (RXR) lead to a dramatic increase in apoE mRNA and protein expression as well as secretion of apoE in a human astrocytoma cell line (CCF‐STTG1 cells). Examination of primary mouse astrocytes also revealed significant induction of apoE mRNA, and protein expression and secretion following incubation with LXR/RXR agonists. Moreover, treatment of mice with a specific synthetic LXR agonist T0901317 resulted in up‐regulation of apoE mRNA and protein in both hippocampus and cerebral cortex, indicating that apoE expression in brain can be up‐regulated by LXR agonists in vivo. Along with a dramatic induction of ABCA1 cholesterol transporter expression, these ligands effectively mediate cholesterol efflux in both CCF‐STTG1 cells and mouse astrocytes in the presence or absence of apolipoprotein AI (apoAI). Our studies provide strong evidence that small molecule LXR/RXR agonists can effectively mediate apoE synthesis and secretion as well as cholesterol homeostasis in astrocytes. LXR/RXR agonists may have significant impact on the pathogenesis of multiple neurological diseases, including AD.


Journal of Lipid Research | 2011

Evacetrapib is a novel, potent, and selective inhibitor of cholesteryl ester transfer protein that elevates HDL cholesterol without inducing aldosterone or increasing blood pressure

Guoqing Cao; Thomas P. Beyer; Youyan Zhang; Robert J. Schmidt; Yan Q. Chen; Sandra L. Cockerham; Karen M. Zimmerman; Sotirios K. Karathanasis; Ellen A. Cannady; Todd Fields; Nathan Bryan Mantlo

Cholesteryl ester transfer protein (CETP) catalyses the exchange of cholesteryl ester and triglyceride between HDL and apoB containing lipoprotein particles. The role of CETP in modulating plasma HDL cholesterol levels in humans is well established and there have been significant efforts to develop CETP inhibitors to increase HDL cholesterol for the treatment of coronary artery disease. These efforts, however, have been hampered by the fact that most CETP inhibitors either have low potency or have undesirable side effects. In this study, we describe a novel benzazepine compound evacetrapib (LY2484595), which is a potent and selective inhibitor of CETP both in vitro and in vivo. Evacetrapib inhibited human recombinant CETP protein (5.5 nM IC50) and CETP activity in human plasma (36 nM IC50) in vitro. In double transgenic mice expressing human CETP and apoAI, evacetrapib exhibited an ex vivo CETP inhibition ED50 of less than 5 mg/kg at 8 h post oral dose and significantly elevated HDL cholesterol. Importantly, no blood pressure elevation was observed in rats dosed with evacetrapib at high exposure multiples compared with the positive control, torcetrapib. In addition, in a human adrenal cortical carcinoma cell line (H295R cells), evacetrapib did not induce aldosterone or cortisol biosynthesis whereas torcetrapib dramatically induced aldosterone and cortisol biosynthesis. Our data indicate that evacetrapib is a potent and selective CETP inhibitor without torcetrapib-like off-target liabilities. Evacetrapib is currently in phase II clinical development.


Molecular and Cellular Biology | 2011

Reducing plasma membrane sphingomyelin increases insulin sensitivity.

Zhiqiang Li; Hongqi Zhang; Jing Liu; C.-P. Liang; Yan Li; G. Teitelman; Thomas P. Beyer; Hai Hoang Bui; David A. Peake; Youyan Zhang; Philip E. Sanders; Ming-Shang Kuo; Tae-Sik Park; Guoqing Cao; Xian-Cheng Jiang

ABSTRACT It has been shown that inhibition of de novo sphingolipid synthesis increases insulin sensitivity. For further exploration of the mechanism involved, we utilized two models: heterozygous serine palmitoyltransferase (SPT) subunit 2 (Sptlc2) gene knockout mice and sphingomyelin synthase 2 (Sms2) gene knockout mice. SPT is the key enzyme in sphingolipid biosynthesis, and Sptlc2 is one of its subunits. Homozygous Sptlc2-deficient mice are embryonic lethal. However, heterozygous Sptlc2-deficient mice that were viable and without major developmental defects demonstrated decreased ceramide and sphingomyelin levels in the cell plasma membranes, as well as heightened sensitivity to insulin. Moreover, these mutant mice were protected from high-fat diet-induced obesity and insulin resistance. SMS is the last enzyme for sphingomyelin biosynthesis, and SMS2 is one of its isoforms. Sms2 deficiency increased cell membrane ceramide but decreased SM levels. Sms2 deficiency also increased insulin sensitivity and ameliorated high-fat diet-induced obesity. We have concluded that Sptlc2 heterozygous deficiency- or Sms2 deficiency-mediated reduction of SM in the plasma membranes leads to an improvement in tissue and whole-body insulin sensitivity.


Journal of Lipid Research | 2006

A 15-ketosterol is a liver X receptor ligand that suppresses sterol-responsive element binding protein-2 activity

Robert J. Schmidt; James Ficorilli; Youyan Zhang; Kelli S. Bramlett; Thomas P. Beyer; Kristen M. Borchert; Michele Dowless; Keith A. Houck; Thomas P. Burris; Patrick I. Eacho; Guosheng Liang; Li Wei Guo; William K. Wilson; Laura F. Michael; Guoqing Cao

Hypercholesterolemia is a major risk factor for coronary artery disease. Oxysterols are known to inhibit cholesterol biosynthesis and have been explored as potential antihypercholesterolemic agents. The ability of 3β-hydroxy-5α-cholest-8(14)-en-15-one (15-ketosterol) to lower non-HDL cholesterol has been demonstrated in rodent and primate models, but the mechanisms of action remain poorly understood. Here we show in a coactivator recruitment assay and cotransfection assays that the 15-ketosterol is a partial agonist for liver X receptor-α and -β (LXRα and LXRβ). The binding affinity for the LXRs was comparable to those of native oxysterols. In a macrophage cell line of human origin, the 15-ketosterol elevated ATP binding cassette transporter ABCA1 mRNA in a concentration-dependent fashion with a potency similar to those of other oxysterols. We further found that in human embryonic kidney HEK 293 cells, the 15-ketosterol suppressed sterol-responsive element binding protein processing activity and thus inhibited mRNA expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, LDL receptor, and PCSK9. Our data thus provide a molecular basis for the hypocholesterolemic activity of the 15-ketosterol and further suggest its potential antiatherosclerotic benefit as an LXR agonist.


Lipids | 2011

The acyl coenzymeA:monoacylglycerol acyltransferase 3 (MGAT3) gene is a pseudogene in mice but encodes a functional enzyme in rats.

Yong Gang Yue; Yan Qun Chen; Youyan Zhang; He Wang; Yue-Wei Qian; Jeffrey S. Arnold; John N. Calley; Shuyu D. Li; William L. Perry; Hong Y. Zhang; Robert J. Konrad; Guoqing Cao

Triglyceride (TAG) absorption involves its initial hydrolysis to fatty acids and monoacylglycerol (MAG), which are resynthesized back to diacylglycerol (DAG) and TAG within enterocytes. The resynthesis of DAG is facilitated by fatty acyl-CoA dependent monoacylglycerol acyltransferases (MGATs). Three MGAT enzymes have been isolated in humans and the expression of MGAT2 and MGAT3 in the intestines suggests their functional role in the TAG absorption. In this paper, we report that the Mogat3 gene appears to be a pseudogene in mice while it is a functional gene in rats. Examination of the mouse genomic Mogat3 sequence revealed multiple changes that would result in a translational stop codon or frameshifts. The rat Mogat3 gene, however, is predicted to encode a functional enzyme of 362 amino acids. Expression of rat MGAT3 in human embryonic kidney 293 (HEK293) cells led to the formation of a 36-kDa protein that displayed significant MGAT but not DGAT activity. Tissue expression analysis of rat MGAT3 by real-time PCR analysis indicated that rat MGAT3 has a high level of expression in intestines and pancreas. Our results thus provide the molecular basis to understand the relative functional role of MGAT2 and MGAT3 and also for future exploration of MGAT3 function in animal models.


Bioorganic & Medicinal Chemistry Letters | 2012

Design, synthesis and structure-activity-relationship of 1,5-tetrahydronaphthyridines as CETP inhibitors.

Maria-Carmen Fernandez; Ana Maria Escribano; Ana I. Mateo; Saravanan Parthasarathy; Eva Maria Martin De La Nava; Xiaodong Wang; Sandra L. Cockerham; Thomas P. Beyer; Robert J. Schmidt; Guoqing Cao; Youyan Zhang; Timothy M. Jones; Anthony G. Borel; Stephanie Ann Sweetana; Ellen A. Cannady; Gregory A. Stephenson; Scott Alan Frank; Nathan Bryan Mantlo

This Letter describes the discovery and SAR optimization of 1,5-tetrahydronaphthyridines, a new class of potent CETP inhibitors. The effort led to the identification of 21b and 21d with in vitro human plasma CETP inhibitory activity in the nanomolar range (IC(50)=23 and 22nM, respectively). Both 21b and 21d exhibited robust HDL-c increase in hCETP/hApoA1 dual heterozygous mice model.


Molecular Genetics and Metabolism | 2002

Liver X receptor and retinoic X receptor mediated ABCA1 regulation and cholesterol efflux in macrophage cells-messenger RNA measured by branched DNA technology.

Youyan Zhang; Thomas P. Beyer; Kelli S. Bramlett; Sufang Yao; Thomas P. Burris; Robert J. Schmidt; Patrick I. Eacho; Guoqing Cao

ABCA1 is an ATP binding cassette transporter that plays an essential role in cholesterol and phospholipid efflux and HDL biogenesis. ABCA1 expression in macrophage cells is subject to regulation by cAMP, cholesterol loading, and ligands of the nuclear receptors liver X receptor (LXR) and retinoid X receptor (RXR). We report here the development of a rapid and high volume branched DNA (bDNA) method to measure ABCA1 mRNA. By using the bDNA method, we show that both LXR and RXR ligands effectively regulate ABCA1 expression in three macrophage cell types: mouse RAW264.7 cell line, mouse peritoneal macrophage cells, and human macrophage THP-1 cells and their regulation is additive. Furthermore, by using a radiolabeled cholesterol efflux assay, we show that both LXR and RXR ligands are sufficient to mediate cholesterol efflux in macrophage cells and their efficacy correlates with ABCA1 regulation. These studies strengthen further the notion that LXR and RXR mediate ABCA1 expression and cholesterol efflux in macrophage cells as a permissive heterodimer and development of small molecule ligands of these nuclear receptors may represent a promising approach to modulating cholesterol efflux and plasma HDL cholesterol level in humans.


Bioorganic & Medicinal Chemistry Letters | 2012

Design and synthesis of new tetrahydroquinolines derivatives as CETP inhibitors

Ana Maria Escribano; Ana I. Mateo; Eva Maria Martin De La Nava; Daniel Ray Mayhugh; Sandra L. Cockerham; Thomas P. Beyer; Robert J. Schmidt; Guoqing Cao; Youyan Zhang; Timothy M. Jones; Anthony G. Borel; Stephanie Ann Sweetana; Ellen A. Cannady; Nathan Bryan Mantlo

This letter describes the discovery and SAR optimization of tetrazoyl tetrahydroquinoline derivatives as potent CETP inhibitors. Compound 6m exhibited robust HDL-c increase in hCETP/hApoA1 double transgenic model and favorable pharmacokinetic properties.

Collaboration


Dive into the Youyan Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xian-Cheng Jiang

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

He Wang

Eli Lilly and Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William R. Bensch

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge