Yow Jiun Jeng
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yow Jiun Jeng.
Environmental Health Perspectives | 2010
Yow Jiun Jeng; Cheryl S. Watson
Background Estrogens are potent nongenomic phospho-activators of extracellular-signal–regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. Objectives We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and bisphenol A) to alter ERK responses induced by physiologic concentrations (1 nM) of estradiol (E2), estrone (E1), and estriol (E3). Methods We quantified hormone/mimetic-induced ERK phosphorylations in the GH3/B6/F10 rat pituitary cell line using a plate immunoassay, comparing effects with those on cell proliferation and by estrogen receptor subtype-selective ligands. Results Alone, these structurally related XEs activate ERKs in an oscillating temporal pattern similar (but not identical) to that with physiologic estrogens. The potency of all estrogens was similar (active between femtomolar and nanomolar concentrations). XEs potently disrupted physiologic estrogen signaling at low, environmentally relevant concentrations. Generally, XEs potentiated (at the lowest, subpicomolar concentrations) and attenuated (at the highest, picomolar to 100 nM concentrations) the actions of the physiologic estrogens. Some XEs showed pronounced nonmonotonic responses/inhibitions. The phosphorylated ERK and proliferative responses to receptor-selective ligands were only partially correlated. Conclusions XEs are both imperfect potent estrogens and endocrine disruptors; the more efficacious an XE, the more it disrupts actions of physiologic estrogens. This ability to disrupt physiologic estrogen signaling suggests that XEs may disturb normal functioning at life stages where actions of particular estrogens are important (e.g., development, reproductive cycling, pregnancy, menopause).
Toxicological Sciences | 2010
Cheryl S. Watson; Yow Jiun Jeng; Mikhail Y. Kochukov
Xenoestrogens can affect the healthy functioning of a variety of tissues by acting as potent estrogens via nongenomic signaling pathways or by interfering with those actions of multiple physiological estrogens. Collectively, our and other studies have compared a wide range of estrogenic compounds, including some closely structurally related subgroups. The estrogens that have been studied include environmental contaminants of different subclasses, dietary estrogens, and several prominent physiological metabolites. By comparing the nongenomic signaling and functional responses to these compounds, we have begun to address the structural requirements for their actions through membrane estrogen receptors in the pituitary, in comparison to other tissues, and to gain insights into their typical non-monotonic dose-response behavior. Their multiple inputs into cellular signaling begin processes that eventually integrate at the level of mitogen-activated protein kinase activities to coordinately regulate broad cellular destinies, such as proliferation, apoptosis, or differentiation.
Environmental Health Perspectives | 2009
Mikhail Y. Kochukov; Yow Jiun Jeng; Cheryl S. Watson
Background Alkylphenols varying in their side-chain lengths [ethyl-, propyl-, octyl-, and nonylphenol (EP, PP, OP, and NP, respectively)] and bisphenol A (BPA) represent a large group of structurally related xenoestrogens that have endocrine-disruptive effects. Their rapid nongenomic effects that depend on structure for cell signaling and resulting functions are unknown. Objectives We compared nongenomic estrogenic activities of alkylphenols with BPA and 17β-estradiol (E2) in membrane estrogen receptor-α–enriched GH3/B6/F10 pituitary tumor cells. These actions included calcium (Ca) signaling, prolactin (PRL) release, extracellular-regulated kinase (ERK) phosphorylation, and cell proliferation. Methods We imaged Ca using fura-2, measured PRL release via radioimmunoassay, detected ERK phosphorylation by fixed cell immunoassay, and estimated cell number using the crystal violet assay. Results All compounds caused increases in Ca oscillation frequency and intracellular Ca volume at 100 fM to 1 nM concentrations, although long-chain alkylphenols were most effective. All estrogens caused rapid PRL release at concentrations as low as 1 fM to 10 pM; the potency of EP, PP, and NP exceeded that of E2. All compounds at 1 nM produced similar increases in ERK phosphorylation, causing rapid peaks at 2.5–5 min, followed by inactivation and additional 60-min peaks (except for BPA). Dose–response patterns of ERK activation at 5 min were similar for E2, BPA, and PP, whereas EP caused larger effects. Only E2 and NP increased cell number. Some rapid estrogenic responses showed correlations with the hydrophobicity of estrogenic molecules; the more hydrophobic OP and NP were superior at Ca and cell proliferation responses, whereas the less hydrophobic EP and PP were better at ERK activations. Conclusions Alkylphenols are potent estrogens in evoking these nongenomic responses contributing to complex functions; their hydrophobicity can largely predict these behaviors.
The FASEB Journal | 2008
Cheryl S. Watson; Yow Jiun Jeng; Mikhail Y. Kochukov
Physiological estrogens, including estrone (E1), estradiol (E2), and estriol (E3), fluctuate with life stage, suggesting specific roles for them in biological and disease processes. We compared their non‐genomic signaling and functional actions in GH3/B6/F10 rat pituitary tumor cells. All hormones caused prolactin release at 1 min; the lowest effective concentrations were 10−11 ME2,10−10 ME1, and 10−7 ME3. All estrogens increased the oscillation frequency of calcium (Ca) spikes, with the same time delay (~200 s) at all levels (10−15 to 10−9 M). At some concentrations, E1 and E3 provoked more Ca‐responding cells than E2. The amplitude and volume of Ca peaks were elevated by all hormones at ≥10−15 M. All hormones caused cell proliferation, with the lowest effective concentrations of E2 (10−15 M) > E1 (10−12 M) > E3 (10−10 M);E2 caused higher maximal cell numbers at most concentrations. All estrogens caused oscillating extracellular‐regulated kinase (ERK) activations, with relative potencies of E1 and E2 > E3. All estrogens were ineffective in activation of ERKs or causing proliferation in a subline expressing low levels of membrane estrogen receptor‐α. Dose‐response patterns were frequently nonmonotonic. Therefore, the hormones E1 and E3, which have been designated “weak” estrogens in genomic actions, are strong estrogens in the nongenomic signaling pathways and functional responses in the pituitary.—Watson, C. S., Jeng, Y.‐J., Kochukov, M. Y. Nongenomic actions of estradiol compared with estrone and estriol in pituitary tumor cell signaling and proliferation. FASEB J. 22, 3328–3336 (2008)
Journal of Molecular Signaling | 2009
Yow Jiun Jeng; Mikhail Y. Kochukov; Cheryl S. Watson
Background Estradiol (E2) mediates various intracellular signaling cascades from the plasma membrane via several estrogen receptors (ERs). The pituitary is an estrogen-responsive tissue, and we have previously reported that E2 can activate mitogen-activated protein kinases (MAPKs) such as ERK1/2 and JNK1/2/3 in the membrane ERα (mERα)-enriched GH3/B6/F10 rat pituitary tumor cell line. Phytoestrogens are compounds found in plants and foods such as soybeans, alfalfa sprouts, and red grapes. They are structurally similar to E2 and share a similar mechanism of action through their binding to ERs. Phytoestrogens bind to nuclear ERs with a much lower affinity and therefore are less potent in mediating genomic responses. However, little is known about their ability to act via mERs to mediate nongenomic effects. Methods To investigate the activation of different nongenomic pathways, and determine the involvement of mERα, we measured prolactin (PRL) release by radio-immunoassay, MAPK activations (ERK1/2 and JNK1/2/3) via a quantitative plate immunoassay, and intracellular [Ca2+] by Fura-2 fluorescence imaging in cells treated with E2 or four different phytoestrogens (coumestrol, daidzein, genistein, and trans-resveratrol). Results Coumesterol and daidzein increased PRL release similar to E2 in GH3/B6/F10 cells, while genistein and trans-resveratrol had no effect. All of these compounds except genistein activated ERK1/2 signaling at 1–10 picomolar concentrations; JNK 1/2/3 was activated by all compounds at a 100 nanomolar concentration. All compounds also caused rapid Ca2+ uptake, though in unique dose-dependent Ca2+ response patterns for several aspects of this response. A subclone of GH3 cells expressing low levels of mERα (GH3/B6/D9) did not respond to any phytoestrogen treatments for any of these responses, suggesting that these nongenomic effects were mediated via mERα. Conclusion Phytoestrogens were much more potent in mediating these nongenomic responses (activation of MAPKs, PRL release, and increased intracellular [Ca2+]) via mERα than was previously reported for genomic responses. The unique non-monotonic dose responses and variant signaling patterns caused by E2 and all tested phytoestrogens suggest that complex and multiple signaling pathways or binding partners could be involved. By activating these different nongenomic signaling pathways, phytoestrogens could have significant physiological consequences for pituitary cell functions.
BMC Cancer | 2009
Yow Jiun Jeng; Cheryl S. Watson
BackgroundPhytoestogens are a group of lipophillic plant compounds that can have estrogenic effects in animals; both tumorigenic and anti-tumorigenic effects have been reported. Prolactin-secreting adenomas are the most prevalent form of pituitary tumors in humans and have been linked to estrogen exposures. We examined the proliferative effects of phytoestrogens on a rat pituitary tumor cell line, GH3/B6/F10, originally subcloned from GH3 cells based on its ability to express high levels of the membrane estrogen receptor-α.MethodsWe measured the proliferative effects of these phytoestrogens using crystal violet staining, the activation of several mitogen-activated protein kinases (MAPKs) and their downstream targets via a quantitative plate immunoassay, and caspase enzymatic activities.ResultsFour phytoestrogens (coumestrol, daidzein, genistein, and trans-resveratrol) were studied over wide concentration ranges. Except trans-resveratrol, all phytoestrogens increased GH3/B6/F10 cell proliferation at some concentration relevant to dietary levels. All four phytoestrogens attenuated the proliferative effects of estradiol when administered simultaneously. All phytoestrogens elicited MAPK and downstream target activations, but with time course patterns that often differed from that of estradiol and each other. Using selective antagonists, we determined that MAPKs play a role in the ability of these phytoestrogens to elicit these responses. In addition, except for trans-resveratrol, a serum removal-induced extrinsic apoptotic pathway was blocked by these phytoestrogens.ConclusionPhytoestrogens can block physiological estrogen-induced tumor cell growth in vitro and can also stimulate growth at high dietary concentrations in the absence of endogenous estrogens; these actions are correlated with slightly different signaling response patterns. Consumption of these compounds should be considered in strategies to control endocrine tumor cell growth, such as in the pituitary.
Steroids | 2012
Cheryl S. Watson; Yow Jiun Jeng; Guangzhen Hu; Ann L. Wozniak; Nataliya N. Bulayeva; Jutatip Guptarak
UNLABELLED Multiple physiologic estrogens (estradiol, estriol, and estrone), as well as xenoestrogenic compounds (including alkylphenols and bisphenol A), can act via nongenomic signaling initiated by liganding of the plasma membrane estrogen receptor-α (mERα). We examined heterotrimeric G protein involvement leading to extracellular-regulated kinase (ERK) activation in GH3/B6/F10 rat anterior pituitary tumor cells that express abundant mERα, and smaller amounts of mERβ and GPR30. A combination of microarrays, immunoblots, and quantitative immunoassays demonstrated the expression of members of all α, β, and γ G protein classes in these cells. Use of selective inhibitors showed that the G(αi) subtype was the primary initiator of downstream ERK signaling. Using antibodies against the GTP-bound form of G(α) protein subtypes i and s, we showed that xenoestrogens (bisphenol A, nonylphenol) activated G(αi) at 15-30s; all alkylphenols examined subsequently suppressed activation by 5min. GTP-activation of G(αi) for all estrogens was enhanced by irreversible cumulative binding to GTPγS. In contrast, G(αs) was neither activated nor deactivated by these treatments with estrogens. ERα and G(αi) co-localized outside nuclei and could be immuno-captured together. Interactions of ERα with G(αi) and caveolin I were demonstrated by epitope proximity ligation assays. An ERα/β antagonist (ICI182780) and a selective disruptor of caveolar structures (nystatin) blocked estrogen-induced ERK activation. CONCLUSIONS Xenoestrogens, like physiologic estrogens, can evoke downstream kinase signaling involving selective interactions of ERα with G(αi) and caveolin I, but with some different characteristics, which could explain their disruptive actions.
Environmental Health | 2010
Yow Jiun Jeng; Mikhail Y. Kochukov; Cheryl S. Watson
BackgroundXenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens.MethodsWe studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively).ResultsAll xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses.ConclusionsResponses mediated by endogenous estrogens representing different life stages are vulnerable to very low concentrations of these structurally related xenoestrogens. Because of their non-classical dose-responses, they must be studied in detail to pinpoint effective concentrations and the directions of response changes.
International Journal of Environmental Research and Public Health | 2012
René Viñas; Yow Jiun Jeng; Cheryl S. Watson
Xenoestrogens (XEs) are chemicals derived from a variety of natural and anthropogenic sources that can interfere with endogenous estrogens by either mimicking or blocking their responses via non-genomic and/or genomic signaling mechanisms. Disruption of estrogens’ actions through the less-studied non-genomic pathway can alter such functional end points as cell proliferation, peptide hormone release, catecholamine transport, and apoptosis, among others. Studies of potentially adverse effects due to mixtures and to low doses of endocrine-disrupting chemicals have recently become more feasible, though few so far have included actions via the non-genomic pathway. Physiologic estrogens and XEs evoke non-monotonic dose responses, with different compounds having different patterns of actions dependent on concentration and time, making mixture assessments all the more challenging. In order to understand the spectrum of toxicities and their mechanisms, future work should focus on carefully studying individual and mixture components across a range of concentrations and cellular pathways in a variety of tissue types.
International Journal of Women's Health | 2010
Cheryl S. Watson; Rebecca A. Alyea; Kathryn A. Cunningham; Yow Jiun Jeng
Gender and sex hormones can influence a variety of mental health states, including mood, cognitive development and function, and vulnerability to neurodegenerative diseases and brain damage. Functions of neuronal cells may be altered by estrogens depending upon the availability of different physiological estrogenic ligands; these ligands and their effects vary with life stages, the genetic or postgenetic regulation of receptor levels in specific tissues, or the intercession of competing nonphysiological ligands (either intentional or unintentional, beneficial to health or not). Here we review evidence for how different estrogens (physiological and environmental/dietary), acting via different estrogen receptor subtypes residing in alternative subcellular locations, influence brain functions and behavior. We also discuss the families of receptors and transporters for monoamine neurotransmitters and how they may interact with the estrogenic signaling pathways.