Yu. A. Chirkunov
Novosibirsk State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu. A. Chirkunov.
Journal of Mathematical Physics | 2015
Yu. A. Chirkunov
We study the five-parameter model, describing the process of nonlinear diffusion in an inhomogeneous medium in the presence of absorption, for which the differential equation of the model admits a continuous Lie group of transformations, acting on the set of its solutions. We found six submodels of the original model of nonlinear diffusion, with different symmetry properties. Of these six submodels, the five submodels with transient absorption, for which the absorption coefficient depends on time according to a power law, represent the greatest interest with a mathematical point of view and with the point of view of physical applications. For each of these nonlinear submodels, we obtained formulas for producing new solutions that contain arbitrary constants, and we found all invariant submodels. All essentially distinct invariant solutions describing these invariant submodels are found in an explicit form or are reduced to finding the solution of nonlinear integral equations. The presence of the arbitrary constants in the integral equations that determine these solutions provide new opportunities for analytical and numerical study of boundary value problems for the received submodels and, thus, for the original model of nonlinear diffusion. For the received invariant submodels, we studied diffusion processes for which at the initial moment of the time at a fixed point is specified as a concentration and its gradient or as a concentration and its velocity. Solving of boundary value problems describing these processes is reduced to the solving of nonlinear integral equations. We established the existence and uniqueness of solutions of these boundary value problems under some additional conditions. The obtained results can be used to study the diffusion of substances, diffusion of conduction electrons and other particles, diffusion of physical fields and propagation of heat in inhomogeneous medium, and also to study a turbulence (Leith model, differential approximation to wave turbulence).
Mechanics of Solids | 2009
Yu. A. Chirkunov
We perform the group foliation of the system of Lamé equations of the classical dynamical theory of elasticity for an infinite subgroup contained in a normal divisor of the main group. The resolving system of this foliation includes the following two classical systems of mathematical physics: the system of equations of vortex-free acoustics and the system of Maxwell equations, which allows one to use wider groups to obtain exact solutions of the Lamé equations. We obtain a first-order conformal-invariant system, which describes shear waves in a three-dimensional elastic medium. We also give examples of partially invariant solutions.
Mathematical Notes | 2010
Yu. A. Chirkunov
We obtain a sufficient condition for the absence of tangent transformations admitted by quasilinear differential equations of second order and a sufficient condition for the linear autonomy of the operators of the Lie group of transformations admitted by weakly nonlinear differential equations of second order. We prove a theorem concerning the structure of conservation laws of first order for weakly nonlinear differential equations of second order. We carry out the classification by first-order conservation laws for linear differential equations of second order with two independent variables.
Journal of Mathematical Physics | 2017
Yu. A. Chirkunov
We fulfilled a group foliation of the system of n-dimensional (n ≥ 2) Lame equations of the classical static theory of elasticity with respect to the infinite subgroup contained in normal subgroup of main group of this system. It permitted us to move from the Lame equations to the equivalent unification of two first-order systems: automorphic and resolving. We obtained a general solution of the automorphic system. This solution is an n-dimensional analogue of the Kolosov-Muskhelishvili formula. We found the main Lie group of transformations of the resolving system of this group foliation. It turned out that in the two-dimensional and three-dimensional cases, which have a physical meaning, this system is conformally invariant, while the Lame equations admit only a group of similarities of the Euclidean space. This is a big success, since in the method of group foliation, resolving equations usually inherit Lie symmetries subgroup of the full symmetry group that was not used for the foliation. In the three-...
Siberian Mathematical Journal | 2009
Yu. A. Chirkunov
Journal of Applied Mechanics and Technical Physics | 2009
Yu. A. Chirkunov
Journal of Applied Mechanics and Technical Physics | 2009
Yu. A. Chirkunov
International Journal of Non-linear Mechanics | 2017
Yu. A. Chirkunov
International Journal of Non-linear Mechanics | 2016
Yu. A. Chirkunov
International Journal of Non-linear Mechanics | 2018
Yu. A. Chirkunov