Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu Bin Lee is active.

Publication


Featured researches published by Yu Bin Lee.


Biomaterials | 2012

Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering

Kisuk Yang; Jung Seung Lee; Yu Bin Lee; Heungsoo Shin; Soong Ho Um; Jeong Beom Kim; Kook In Park; Haeshin Lee; Seung Woo Cho

Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs.


Biomacromolecules | 2012

Mussel-Inspired Immobilization of Vascular Endothelial Growth Factor (VEGF) for Enhanced Endothelialization of Vascular Grafts

Young Min Shin; Yu Bin Lee; Seok Joo Kim; Jae Kyeong Kang; Jong-Chul Park; Wonhee Jang; Heungsoo Shin

Most polymeric vascular prosthetic materials have low patency rate for replacement of small diameter vessels (<5 mm), mainly due to failure to generate healthy endothelium. In this study, we present polydopamine-mediated immobilization of growth factors on the surface of polymeric materials as a versatile tool to modify surface characteristics of vascular grafts potentially for accelerated endothelialization. Polydopamine was deposited on the surface of biocompatible poly(L-lactide-co-ε-caprolactone) (PLCL) elastomer, on which vascular endothelial growth factor (VEGF) was subsequently immobilized by simple dipping. Surface characteristics and composition were investigated by using scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Immobilization of VEGF on the polydopamine-deposited PLCL films was effective (19.8 ± 0.4 and 197.4 ± 19.7 ng/cm(2) for DPv20 and DPv200 films, respectively), and biotin-mediated labeling of immobilized VEGF revealed that the fluorescence intensity increased as a function of the concentration of VEGF solution. The effect of VEGF on adhesion of HUVECs was marginal, which may have been masked by polydopamine layer that also enhanced cell adhesion. However, VEGF-immobilized substrate significantly enhanced proliferation of HUVECs for over 7 days of in vitro culture and also improved their migration. In addition, immobilized VEGF supported robust cell to cell interactions with strong expression of CD 31 marker. The same process was effective for immobilization of basic fibroblast growth factor, demonstrating the robustness of polydopamine layer for secondary ligation of growth factors as a simple and novel surface modification strategy for vascular graft materials.


Biomaterials | 2012

Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials

Yu Bin Lee; Young Min Shin; Ji-hye Lee; Indong Jun; Jae Kyeong Kang; Jong-Chul Park; Heungsoo Shin

In this study, we introduced a simple method for polydopamine-mediated immobilization of dual bioactive factors for the preparation of functionalized vascular graft materials. Polydopamine was deposited on elastic and biodegradable poly(lactic acid-co-ɛ-caprolactone) (PLCL) films, and a cell adhesive RGD-containing peptide and basic fibroblast growth factor were subsequently immobilized by simple dipping. We used an enzyme-linked immunosorbent assay and fluorescamine assay to confirm that we had stably immobilized bioactive molecules on the polydopamine-coated PLCL film in a reaction time-dependent manner. When human umbilical vein endothelial cells (HUVEC) were cultured on the prepared substrates, the number of adherent cells and proliferation of HUVEC for up to 14 days were greatest on the film immobilized with dual factors. On the other hand, the film immobilized with RGD peptide exhibited the highest migration speed compared to the other groups. The expression of cluster of differentiation 31 and von Willebrand factor, which indicates maturation of endothelial cells, was highly stimulated in the dual factor-immobilized group, and passively adsorbed factors showed a negligible effect. The immobilization of bioactive molecules inspired by polydopamine was successful, and adhesion, migration, proliferation and differentiation of HUVEC were synergistically accelerated by the presence of multiple signaling factors. Collectively, our results have demonstrated that a simple coating with polydopamine enables the immobilization of multiple bioactive molecules for preparation of polymeric functionalized vascular graft materials.


Biomacromolecules | 2015

Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications.

Sajeesh Kumar Madhurakkat Perikamana; Jin-Kyu Lee; Yu Bin Lee; Young Min Shin; Esther J. Lee; Antonios G. Mikos; Heungsoo Shin

Current advances in biomaterial fabrication techniques have broadened their application in different realms of biomedical engineering, spanning from drug delivery to tissue engineering. The success of biomaterials depends highly on the ability to modulate cell and tissue responses, including cell adhesion, as well as induction of repair and immune processes. Thus, most recent approaches in the field have concentrated on functionalizing biomaterials with different biomolecules intended to evoke cell- and tissue-specific reactions. Marine mussels produce mussel adhesive proteins (MAPs), which help them strongly attach to different surfaces, even under wet conditions in the ocean. Inspired by mussel adhesiveness, scientists discovered that dopamine undergoes self-polymerization at alkaline conditions. This reaction provides a universal coating for metals, polymers, and ceramics, regardless of their chemical and physical properties. Furthermore, this polymerized layer is enriched with catechol groups that enable immobilization of primary amine or thiol-based biomolecules via a simple dipping process. Herein, this review explores the versatile surface modification techniques that have recently been exploited in tissue engineering and summarizes polydopamine polymerization mechanisms, coating process parameters, and effects on substrate properties. A brief discussion of polydopamine-based reactions in the context of engineering various tissue types, including bone, blood vessels, cartilage, nerves, and muscle, is also provided.


Colloids and Surfaces B: Biointerfaces | 2011

Time-dependent mussel-inspired functionalization of poly(l-lactide-co-ɛ-caprolactone) substrates for tunable cell behaviors

Young Min Shin; Yu Bin Lee; Heungsoo Shin

Surface properties of biomaterials, such as hydrophobic/hydrophilic balance, chemical group distribution, and topography play important roles in regulation of many cellular behaviors. In this study, we present a bio-inspired coating of synthetic biodegradable poly(L-lactide-co-ɛ-caprolactone) (PLCL) films by using polydopamine for tunable cell behaviors such as adhesion and proliferation. Polydopamine coating decreased the water contact angles of the PLCL film from 75° to 40°, while the amount of coated polydopamine increased from 0.6 μg/cm(2) to 177.9 μg/cm(2). During the process, dopamine could be directly polymerized on the surface of the PLCL film to form a thin layer or nanosized particles of self-aggregates, which resulted in increase of overall roughness in a time-dependent manner. Characterization of surface atomic composition revealed an increase in signals from nitrogen and the C-N bond, both suggesting homogeneous polydopamine coating with prolonged coating time. The mechanical properties were similar following reaction with polydopamine for a time shorter than 30 min, while alterations in elongation and Youngs modulus were observed when the coating time exceeded 240 min. Cell adhesion and proliferation on the polydopamine-coated films were significantly greater than those on the non-coated films. Interestingly, these cell behaviors were significantly improved even under the minimal coating time (5 min). In summary, the bio-inspired coating is of use to generate modular surface of biomaterial based on synthetic poly(α-hydroxy ester)s for tunable cell behaviors with optimization of coating time within the range in which their mechanical properties are not compromised.


Macromolecular Bioscience | 2012

Electroactive Electrospun Polyaniline/Poly[(L-lactide)-co-(ε-caprolactone)] Fibers for Control of Neural Cell Function

Suk Ho Bhang; Sung In Jeong; Tae-Jin Lee; Indong Jun; Yu Bin Lee; Byung-Soo Kim; Heungsoo Shin

Blends of PAni and PLCL are electrospun to prepare uniform fibers for the development of electrically conductive, engineered nerve grafts. PC12 cell viability is significantly higher on RPACL fibers than on PLCL-only fibers, and the electrical conductivity of the fibers affects the differentiation of PC12 cells; the number of cells positively-stained and their expression level are significantly higher on RPACL fibers. PC12 cell bodies display an oriented morphology with outgrowing neurites. On RPACL fibers, the expression level of paxillin, cdc-42, and rac is positively affected and proteins including RhoA and ERK exist as more activated state. These results suggest that electroactive fibers may hold promise as a guidance scaffold for neuronal tissue engineering.


ACS Applied Materials & Interfaces | 2016

Creating Hierarchical Topographies on Fibrous Platforms Using Femtosecond Laser Ablation for Directing Myoblasts Behavior.

Indong Jun; Yong-Woo Chung; Yunhoe Heo; Hyung-Seop Han; Jimin Park; Hongsoo Jeong; Hyunjung Lee; Yu Bin Lee; Yu-Chan Kim; Hyun-Kwang Seok; Heungsoo Shin; Hojeong Jeon

Developing an artificial extracellular matrix that closely mimics the native tissue microenvironment is important for use as both a cell culture platform for controlling cell fate and an in vitro model system for investigating the role of the cellular microenvironment. Electrospinning, one of the methods for fabricating structures that mimic the native ECM, is a promising technique for creating fibrous platforms. It is well-known that align or randomly distributed electrospun fibers provide cellular contact guidance in a single pattern. However, native tissues have hierarchical structures, i.e., topographies on the micro- and nanoscales, rather than a single structure. Thus, we fabricated randomly distributed nanofibrous (720 ± 80 nm in diameter) platforms via a conventional electrospinning process, and then we generated microscale grooves using a femtosecond laser ablation process to develop engineered fibrous platforms with patterned hierarchical topographies. The engineered fibrous platforms can regulate cellular adhesive morphology, proliferation, and distinct distribution of focal adhesion proteins. Furthermore, confluent myoblasts cultured on the engineered fibrous platforms revealed that the direction of myotube assembly can be controlled. These results indicate that our engineered fibrous platforms may be useful tools in investigating the roles of nano- and microscale topographies in the communication between cells and ECM.


Biomacromolecules | 2013

Rapid Transfer of Endothelial Cell Sheet Using a Thermosensitive Hydrogel and Its Effect on Therapeutic Angiogenesis

Seok Joo Kim; Indong Jun; Dong Wan Kim; Yu Bin Lee; Young Jun Lee; Ji-hye Lee; Ki Dong Park; Hansoo Park; Heungsoo Shin

In this study, thermosensitive hydrogels incorporated with multiple cell-interactive factors were developed as a substrate to form monolayer of human umbilical vein endothelial cells (HUVECs) that can be detached and transferrable to target sites as a cell-sheet in response to temperature change. The cell adhesive peptide (RGD) and growth factor (bFGF) covalently incorporated within the hydrogel significantly enhanced adhesion and proliferation of HUVECs, allowing for the formation of their confluent monolayer. Meanwhile, the precisely controllable change in the size of the hydrogels was observed by a repeated increase and decrease in temperature from 37 to 4 °C. By exploiting this unique behavior, the detachment and transfer of HUVEC sheet confluently cultured at 37 °C was rapidly induced within 10 min by expansion of the hydrogels when the temperature was decreased to 4 °C. The transferred cell sheet was highly viable and maintained robust cell-cell junction. Finally, the process of cell sheet transfer was directly applied onto an ischemic injury in the hind limb of mice. The transplanted HUVECs as a sheet retarded tissue necrosis over 14 days in comparison with that of direct injection of the same number of cells. Our results suggest that the developed multifunctional Tetronic-tyramine hydrogels could serve as an ideal substrate to modulate the formation of an endothelial cell layer that could potentially be utilized to treat peripheral arterial disease.


Colloids and Surfaces B: Biointerfaces | 2015

Effect of immobilized collagen type IV on biological properties of endothelial cells for the enhanced endothelialization of synthetic vascular graft materials

Yunhoe Heo; Young Min Shin; Yu Bin Lee; Youn Mook Lim; Heungsoo Shin

Regeneration of healthy endothelium onto vascular graft materials is imperative for prevention of intimal hyperplasia and thrombogenesis. In this study, we investigated the effect of collagen type IV (COL-IV) immobilized onto electrospun nanofibers on modulation of endothelial cell (EC) function, as a potential signal to rapid endothelialization of vascular grafts. COL-IV is assembled in basement membrane underneath intimal layer and regulates morphogenesis of blood vessels. For immobilization of COL-IV, poly(l-lactic acid) (PLLA) nanofibers (PL) were prepared as a model vascular graft substrate, onto which acrylic acid (AAc) was then grafted by using gamma-ray irradiation. AAc graft was dependent on irradiation doses and AAc concentrations, which allowed us to select the condition of 5% (v/v) AAc and 10 kGy for further conjugation of COL-IV. COL-IV immobilization was proportionally controlled as a function of its concentration. Atomic force microscope (AFM) analysis qualitatively supported immobilization of COL-IV, demonstrating increase in root mean square roughness of the PL from 665.37 ± 13.20 nm to 1440.74 ± 33.24. However, the Youngs modulus of nanofibers was retained as approximately 1 MPa, regardless of surface modification. The number of ECs attached on the nanofibers with immobilized COL-IV was significantly increased by 5 times (1052 ± 138 cells/mm(2)) from pristine PL (234 ± 41 cells/mm(2)). In addition, the effect of immobilized COL-IV was profound for enhancing proliferation and up-regulation of markers implicated in rapid endothelialization. Collectively, our results suggest that COL-IV immobilized onto electrospun PLLA nanofibers may serve as a promising instructive cue used in vascular graft materials.


Journal of Materials Chemistry B | 2016

Mussel adhesive protein inspired coatings on temperature-responsive hydrogels for cell sheet engineering

Yu Bin Lee; Young Min Shin; Eun Mi Kim; Joong-yup Lee; Jangsoo Lim; Seong Keun Kwon; Heungsoo Shin

Stimuli-responsive materials have been a major subject of investigation for cell sheet technology in regenerative medicine and pharmaceutical research. Most materials and processes, however, have shortcomings, such as a relatively long operation time, varied detachment efficiency, and potential toxicity. In this study, we develop an effective cell sheet translocation protocol using a cell adhesive and temperature-responsive hydrogel. Cell adhesion on the hydrogel was modulated with a bio-inspired coating of polydopamine (PD), the amount of which was tuned to increase as a function of coating time (30-120 min). This PD-coated hydrogel promotes the adhesion of human dermal fibroblasts (HDFBs), mediated by serum protein adsorption, and allows for the formation of a cell sheet (confluent cell monolayer) following culture. Hydrogel cell sheets with 30 min of PD coating (PD30) were readily translocated to a target surface (glass) within 10 min of thermal expansion (induced by changing the temperature from 37 to 4 °C). Under these conditions, the translocation efficiency and cell viability were greater than 90%. However, hydrogel cell sheets with >60 min PD coating remained almost completely attached, while the surfaces exhibited significantly lower cell viability (<50%), suggesting that the regulation of PD coating is a major consideration for translocating cell sheets to their target. Furthermore, the PD30 hydrogel-cultured cell sheet was applied in vivo to the subcutaneous tissue of the mouse model, and thermal expansion was induced by dropping 4 °C saline solution onto the hydrogel, at which point the hydrogel expanded and the cell sheet successfully translocated to the tissue within approximately 20 min. These translocated cell sheets exhibited stable retention over the following 7 days post-transplantation. Together, this shows that the cell adhesive hydrogels developed here could be effectively utilized as a rapid cell delivery tool for use in regenerative medicine.

Collaboration


Dive into the Yu Bin Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge