Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Chien Kao is active.

Publication


Featured researches published by Yu-Chien Kao.


The American Journal of Surgical Pathology | 2016

Recurrent CIC Gene Abnormalities in Angiosarcomas: A Molecular Study of 120 Cases With Concurrent Investigation of PLCG1, KDR, MYC, and FLT4 Gene Alterations.

Shih-Chiang Huang; Lei Zhang; Yun-Shao Sung; Chun-Liang Chen; Yu-Chien Kao; Narasimhan P. Agaram; Samuel Singer; William D. Tap; D'Angelo S; Cristina R. Antonescu

Angiosarcoma (AS) is a rare sarcoma subtype showing considerable clinicopathologic and genetic heterogeneity. Most radiation-induced AS show MYC gene amplifications, with a subset of cases harboring KDR, PTPRB, and PLCG1 mutations. Despite recent advances, the genetic abnormalities of most primary AS remain undefined. Whole-transcriptome sequencing was initiated in 2 index cases of primary soft tissue AS with epithelioid morphology occurring in young adults for novel gene discovery. The candidate abnormalities were validated and then screened by targeted sequencing and fluorescence in situ hybridization in a large cohort of 120 well-characterized AS cases. Findings were subsequently correlated with the status of KDR, PLCG1, MYC, and FLT4 gene abnormalities. The clinicopathologic relevance and prognostic significance of these genetic changes were analyzed by statistical methods. Concurrent CIC mutations and CIC rearrangements were identified in both index cases, with a CIC-LEUTX fusion detected in 1 case. Upon screening, an additional visceral AS in a young adult had a complex CIC rearrangement, whereas 6 others harbored only CIC mutations. All 3 CIC-rearranged AS cases lacked vasoformation and had a solid growth of round, epithelioid to rhabdoid cells, showing immunoreactivity for CD31 and Ets-related gene and sharing a transcriptional signature with other round cell sarcomas, including CIC-rearranged tumors. Overall, CIC abnormalities occurred in 9% (9/98) of cases, affecting younger patients with primary AS, with an inferior disease-free survival. In contrast, PLCG1 and KDR mutations occurred in both primary and secondary AS cases, accounting for 9.5% and 7%, respectively, with a predilection for breast and bone/viscera location, regardless of MYC status. MYC amplification was present in most secondary AS related to breast cancer (91%) compared with other causes (25%) or primary AS (7%). FLT4-amplified AS lacked PLCG1/KDR mutations, occurring predominantly in MYC-amplified population, and showed poor prognosis.


The American Journal of Surgical Pathology | 2017

Sarcomas With Cic-rearrangements are a Distinct Pathologic Entity With Aggressive Outcome: A Clinicopathologic and Molecular Study of 115 Cases.

Cristina R. Antonescu; Adepitan A. Owosho; Lei Zhang; Sonja Chen; Kemal Deniz; Joseph M. Huryn; Yu-Chien Kao; Shih-Chiang Huang; Samuel Singer; William D. Tap; Inga-Marie Schaefer; Christopher D. M. Fletcher

CIC-DUX4 gene fusion, resulting from either a t(4;19) or t(10;19) translocation, is the most common genetic abnormality detected in EWSR1-negative small blue round cell tumors. Following their discovery it was debated if these tumors should be classified as variants of Ewing sarcoma (ie, atypical Ewing sarcoma) or as a stand-alone pathologic entity. As such the WHO classification temporarily grouped the CIC-rearranged tumors under undifferentiated sarcomas with round cell phenotype, until further clinical evidence was available. However, most studies reported so far include small series with limited follow-up information, which preclude a more definitive assessment. The present work investigates the clinicopathologic features of a large cohort of sarcomas with CIC gene rearrangement, to define their clinical presentation, morphologic spectrum, and outcome. Our study further examines the overall survival of the CIC-positive cohort compared with a control group of EWSR1-rearranged Ewing sarcoma matched for age and stage. The study cohort included 115 patients, with a mean age of 32 years and a slight male predominance. Most tumors occurred in the soft tissue (86%), predominantly deep-seated and equally divided among trunk and extremity, followed by visceral locations (12%) and rarely in the bone (3%). Microscopically, most tumors showed round to ovoid cytomorphology but half of the cases showed also focal areas of spindling and epithelioid/rhabdoid phenotype, with frequent myxoid stromal changes. Variable CD99 reactivity was seen in 84% cases, with a diffuse pattern only in 23% of cases, whereas nuclear WT1 was seen in 92%. A CIC-DUX4 fusion was detected in 57% of cases, with either DUX4 on 4q35 (35%) or on 10q26 in 25 (22%) cases. No FOXO4 gene rearrangements were present in 39 cases tested. Clinical follow-up was available in 57 patients, with a 5-year survival of 43%, which was significantly lower than the 77% 5-year survival in the control Ewing sarcoma group (P=0.002). Our findings show that CIC-DUX4 sarcomas occur most commonly in young adults within the somatic soft tissues, having a wide spectrum of morphology including round, epithelioid and spindle cells, and associated with an aggressive clinical course, with an inferior overall survival compared with Ewing sarcoma. The results support the classification of CIC-rearranged tumors as an independent molecular and clinical subset of small blue round cell tumors distinct from Ewing sarcoma.


The American Journal of Surgical Pathology | 2015

Frequent FOS Gene Rearrangements in Epithelioid Hemangioma: A Molecular Study of 58 Cases with Morphologic Reappraisal

Shih-Chiang Huang; Lei Zhang; Yun-Shao Sung; Chun-Liang Chen; Thomas Krausz; Brendan C. Dickson; Yu-Chien Kao; Narasimhan P. Agaram; Christopher D. M. Fletcher; Cristina R. Antonescu

Epithelioid hemangioma (EH) is a unique benign vasoformative tumor composed of epithelioid endothelial cells. Although a small subset of EHs with atypical features harbor ZFP36-FOSB fusions, no additional genetic abnormalities have been found to date in the remaining cases. On the basis of a novel FOS-LMNA gene fusion identified by RNA sequencing in an index case of a skeletal EH with typical morphology, we sought to investigate the prevalence of FOS rearrangement in a large cohort of EHs. Thus 57 additional EH cases lacking FOSB rearrangements were studied for FOS gene abnormalities by fluorescence in situ hybridization, and results were correlated with morphologic appearance and clinical presentation. The EHs were subclassified as typical (n=25), cellular (n=21), and angiolymphoid hyperplasia with eosinophilia (ALHE) (n=12) variants. The ALHE was defined as an EH with a vascular “blow-out” pattern associated with a variable degree of inflammation. There were 17 (29%) cases bearing FOS gene rearrangements among 58 cases tested, including 12 male and 5 female patients, with a mean age of 42 years. Most FOS-rearranged EHs occurred in the bone (10) and soft tissue (6), whereas only 1 case was cutaneous. The predominant anatomic site was the extremity (12), followed by trunk (3), head and neck (1), and penis (1). The incidence of FOS rearrangement was significantly higher in bone (59%, P=0.006) and lower in head and neck (5%, P=0.009). Twelve of the FOS-rearranged cases were cellular EH (P=0.001) associated with moderate mitotic activity (2 to 5/10 HPF) and milder inflammatory background. All 12 ALHE cases lacked FOS gene abnormalities, suggesting different pathogenesis. In conclusion, FOS rearrangement was present in a third of EHs across different locations and histologic variants; however, it was more prevalent in cellular EH and intraosseous lesions, compared with those in skin, soft tissue, and head and neck. This genetic abnormality can be useful in challenging cases, to distinguish cellular EHs from malignant epithelioid vascular tumors. These results also suggest that dysregulation of the FOS family of transcription factors through chromosomal translocation is as a key event in the tumorigenesis of EH except for the ALHE variant.


The American Journal of Surgical Pathology | 2017

Ewsr1 Fusions With Creb Family Transcription Factors Define a Novel Myxoid Mesenchymal Tumor With Predilection for Intracranial Location.

Yu-Chien Kao; Yun-Shao Sung; Lei Zhang; Chun-Liang Chen; Sumathi Vaiyapuri; Marc K. Rosenblum; Cristina R. Antonescu

Recurrent gene fusions involving EWSR1 with members of the cAMP response element binding protein (CREB) family (ATF1 and CREB1) have been reported in a diverse group of tumors including angiomatoid fibrous histiocytoma (AFH), soft tissue and gastrointestinal clear cell sarcoma, primary pulmonary myxoid sarcoma, and hyalinizing clear cell carcinoma of salivary gland. We have recently encountered a group of 5 myxoid mesenchymal tumors positive for EWSR1 fusions with one of the CREB family member (ATF1, CREB1, and CREM), with histologic features distinct from any of the previously described pathologic entities. Tumors occurred in children or young adults (12 to 23 y; mean, 18 y), with equal sex distribution. All except 1 were intracranial (intra-axial, 2; meningeal, 2), whereas 1 was perirectal. Histologically, the tumors were well circumscribed, often lobulated, composed of uniform ovoid to round cells, and arranged in cord-like or reticular structures in a myxoid background. All except 1 displayed unique sunburst amianthoid fibers. Immunohistochemically, tumors were positive for epithelial membrane antigen (5/5; 4 focal, 1 diffuse) and desmin (3/5). A novel EWSR1-CREM fusion was identified by RNA sequencing in the perirectal tumor, which was further confirmed by fluorescence in situ hybridization (FISH) and reverse transcription-polymerase chain reaction (RT-PCR). A second case with similar EWSR1-CREM fusion was identified by RT-PCR and FISH in a meningeal tumor. The remaining cases studied by FISH showed the presence of EWSR1-CREB1 fusion in 2 cases and EWSR1-ATF1 in 1. In conclusion, we report a distinct group of myxoid mesenchymal neoplasms occurring in children or young adults with a predilection for intracranial locations. Although the immunoprofile [epithelial membrane antigen (EMA), desmin] and the fusion type raise the possibility of a myxoid AFH, none of the typical histologic findings of AFH were present, suggesting a novel entity.


Modern Pathology | 2017

BCOR is a robust diagnostic immunohistochemical marker of genetically diverse high-grade endometrial stromal sarcoma, including tumors exhibiting variant morphology

Sarah Chiang; Cheng-Han Lee; Colin J.R. Stewart; Esther Oliva; Lien N Hoang; Rola H. Ali; Martee L. Hensley; Javier A Arias-Stella; Denise Frosina; Achim A. Jungbluth; Ryma Benayed; Marc Ladanyi; Meera Hameed; Lu Wang; Yu-Chien Kao; Cristina R. Antonescu; Robert A. Soslow

Recognition of high-grade endometrial stromal sarcoma is important because of its aggressive clinical behavior. Morphologic features of YWHAE-NUTM2 high-grade endometrial stromal sarcoma may overlap with other uterine sarcoma types. BCOR immunoexpression was studied in these tumors and their morphologic mimics to assess its diagnostic utility. BCOR immunohistochemical staining was performed on archival tissue from 28 high-grade endometrial stromal sarcomas with classic morphology (20 YWHAE-NUTM2, 5 ZC3H7B-BCOR, 3 BCOR-ZC3H7B), 3 high-grade endometrial stromal sarcomas with unusual morphology and unknown gene rearrangement status, 66 low-grade endometrial stromal sarcomas, 21 endometrial stromal nodules, 38 uterine leiomyosarcomas, and 19 uterine leiomyomas. Intensity of nuclear staining and percentage of positive tumor cells were recorded. Strong diffuse nuclear BCOR staining (defined as >95% of tumor cells) was seen in the round cell component of all 20 (100%) classic YWHAE-NUTM2 high-grade endometrial stromal sarcomas and the 3 unusual high-grade endometrial stromal sarcomas which prompted FISH studies confirming YWHAE rearrangement in 2 tumors. Genomic PCR confirmed the presence of BCOR exon 16 internal tandem duplication in the third case. Diffuse BCOR staining was strong in three and weak in one BCOR-rearranged high-grade endometrial stromal sarcoma while absent in the remaining four BCOR-rearranged tumors. BCOR staining was weakly positive in <5% of tumor cells in 4 of 66 (6%) low-grade endometrial stromal sarcomas and 1 of 18 (6%) endometrial stromal nodules and weakly to moderately positive in <5–40% of tumor cells in 6 of 31 (19%) leiomyosarcomas. No BCOR staining was seen in the remaining low-grade endometrial stromal sarcomas, endometrial stromal nodules, leiomyosarcomas, or any of the leiomyomas. BCOR immunohistochemical staining is a highly sensitive marker for YWHAE-NUTM2 high-grade endometrial stromal sarcoma with both classic and unusual morphology and identifies a subset of high-grade endometrial stromal sarcoma with BCOR alterations, including BCOR rearrangement and internal tandem duplication.


Genes, Chromosomes and Cancer | 2017

BCOR Upregulation in a Poorly Differentiated Synovial Sarcoma with SS18L1-SSX1 Fusion - A Pathologic and Molecular Pitfall.

Yu-Chien Kao; Yun-Shao Sung; Lei Zhang; Samuel Kenan; Samuel Singer; William D. Tap; David Swanson; Brendan C. Dickson; Cristina R. Antonescu

The diagnosis of poorly differentiated synovial sarcoma (PD‐SS) may be challenging due to overlapping morphologic features with other undifferentiated round cell sarcomas (URCS). Particularly relevant is the histologic overlap and shared BCOR overexpression between a subset of SS and URCS with various BCOR genetic abnormalities. Here, we report a case of PD‐SS lacking the canonical SS18‐SSX gene fusion, but showing strong BCOR immunoreactivity and BCOR gene abnormalities by FISH, which were misinterpreted as a URCS with BCOR gene rearrangements. The tumor had an unusual clinical presentation arising as an intraneural tumor in the ankle of a 29‐year‐old female. The tumor displayed a mixture of fascicular spindle cells and undifferentiated round cell components. FISH studies showed no SS18 gene abnormality; however, RNA sequencing identified a fusion transcript involving SS18L1 (a paralog gene of SS18 at 20q13.33) and SSX1. Further FISH testing validated rearrangements in SSX1 and SS18L1 genes, in addition to complex structural abnormalities of the Xp11.22‐4 region. This is the second reported SS case harboring an SS18L1‐SSX1 alternative fusion variant, similarly occurring in association with a large nerve. The lack of SS18 gene rearrangements by FISH corroborated with the BCOR overexpression at both mRNA and protein level may result in diagnostic pitfalls with URCS with BCOR gene abnormalities. Our results further suggest that BCOR upregulation is emerging as a common downstream pathway for SS with either typical SS18‐SSX transcript or with rare fusion variants, such as SS18L1‐SSX.


Genes, Chromosomes and Cancer | 2016

Secondary EWSR1 Gene Abnormalities in SMARCB1‐Deficient Tumors with 22q11‐12 Regional Deletions: Potential Pitfalls in Interpreting EWSR1 FISH Results

Shih-Chiang Huang; Lei Zhang; Yun-Shao Sung; Chun-Liang Chen; Yu-Chien Kao; Narasimhan P. Agaram; Cristina R. Antonescu

SMARCB1 inactivation occurs in a variety of tumors, being caused by various genetic mechanisms. Since SMARCB1 and EWSR1 genes are located close to each other on chromosome 22, larger SMARCB1 deletions may encompass the EWSR1 locus. Herein, we report four cases with SMARCB1‐deletions showing concurrent EWSR1 gene abnormalities by FISH, which lead initially to misinterpretations as EWSR1‐rearranged tumors. Our study group included various morphologies: a poorly differentiated chordoma, an extrarenal rhabdoid tumor, a myoepithelial carcinoma, and a proximal‐type epithelioid sarcoma. All cases showed loss of SMARCB1 (INI1) by immunohistochemistry (IHC) and displayed characteristic histologic features for the diagnoses. The SMARCB1 FISH revealed homozygous or heterozygous deletions in three and one case, respectively. The co‐hybridized EWSR1 probes demonstrated either unbalanced split signals or heterozygous deletion in two cases each. The former suggested bona fide rearrangement, while the latter resembled an unbalanced translocation. However, all the FISH patterns were quite complex and distinct from the simple and uniform split signals seen in typical EWSR1 rearrangements. We conclude that in the context of 22q11‐12 regional alterations present in SMARCB1‐deleted tumors, simultaneous EWSR1 involvement may be misinterpreted as equivalent to EWSR1 rearrangement. A detailed clinicopathologic correlation and supplementing the EWSR1 FISH assay with complementary methodology is mandatory for correct diagnosis.


The American Journal of Surgical Pathology | 2017

Recurrent : Expanding the Genetic Spectrum of Tumors With Overlapping Features With Infantile Fibrosarcoma braf : Expanding the Genetic Spectrum of Tumors With Overlapping Features With Infantile Fibrosarcoma Gene Fusions in a Subset of Pediatric Spindle Cell Sarcomas: Expanding the Genetic Spectrum of Tumors With Overlapping Features With Infantile Fibrosarcoma

Yu-Chien Kao; Christopher D. M. Fletcher; Rita Alaggio; Leonard H. Wexler; Lei Zhang; Yun-Shao Sung; Dicle Orhan; Wei-chin Chang; David Swanson; Brendan C. Dickson; Cristina R. Antonescu

Infantile fibrosarcomas (IFS) represent a distinct group of soft tissue tumors occurring in patients under 2 years of age and most commonly involving the extremities. Most IFS show recurrent ETV6-NTRK3 gene fusions, sensitivity to chemotherapy, and an overall favorable clinical outcome. However, outside these well-defined pathologic features, no studies have investigated IFS lacking ETV6-NTRK3 fusions, or tumors with the morphology resembling IFS in older children. This study was triggered by the identification of a novel SEPT7-BRAF fusion in an unclassified retroperitoneal spindle cell sarcoma in a 16-year-old female by targeted RNA sequencing. Fluorescence in situ hybridization screening of 9 additional tumors with similar phenotype and lacking ETV6-NTRK3 identified 4 additional cases with BRAF gene rearrangements in the pelvic cavity (n=2), paraspinal region (n=1), and thigh (n=1) of young children (0 to 3 y old). Histologically, 4 cases including the index case shared a fascicular growth of packed monomorphic spindle cells, with uniform nuclei and fine chromatin, and a dilated branching vasculature; while the remaining case was composed of compact cellular sheets of short spindle to ovoid cells. In addition, a minor small blue round cell component was present in 1 case. Mitotic activity ranged from 1 to 9/10 high power fields. Immunohistochemical stains were nonspecific, with only focal smooth muscle actin staining demonstrated in 3 cases tested. Of the remaining 5 BRAF negative cases, further RNA sequencing identified 1 case with EML4-NTRK3 in an 1-year-old boy with a foot IFS, and a second case with TPM3-NTRK1 fusion in a 7-week-old infant with a retroperitoneal lesion. Our findings of recurrent BRAF gene rearrangements in tumors showing morphologic overlap with IFS expand the genetic spectrum of fusion-positive spindle cell sarcomas, to include unusual presentations, such as older children and adolescents and predilection for axial location, thereby opening new opportunities for kinase-targeted therapeutic intervention.


Genes, Chromosomes and Cancer | 2017

Expanding the molecular signature of ossifying fibromyxoid tumors with two novel gene fusions: CREBBP-BCORL1 and KDM2A-WWTR1

Yu-Chien Kao; Yun-Shao Sung; Lei Zhang; Chun-Liang Chen; Shih-Chiang Huang; Cristina R. Antonescu

Ossifying fibromyxoid tumor (OFMT) is an uncommon mesenchymal neoplasm of uncertain differentiation and intermediate malignant potential. Recurrent gene fusions involving either PHF1 or BCOR have been found in 85% of OFMT, including typical and malignant examples. As a subset of OFMT still lack known genetic abnormalities, we identified two OFMTs negative for PHF1 and BCOR rearrangements, which were subjected to transcriptome analysis for fusion discovery. The RNA sequencing found a novel CREBBP‐BCORL1 fusion candidate in an axillary mass of a 51 year‐old male and a KDM2A‐WWTR1 in a thigh mass of a 36 year‐old male. The gene fusions were validated by RT‐PCR and FISH in the index cases and then screened by FISH on 4 additional OFMTs lacking known fusions. An identical CREBBP‐BCORL1 fusion was found in an elbow tumor from a 30 year‐old male. Both OFMTs with CREBBP‐BCORL1 fusions had areas of typical OFMT morphology, exhibiting uniform round to epithelioid cells arranged in cords or nesting pattern in a fibromyxoid stroma. The OFMT with KDM2A‐WWTR1 fusion involved dermis and superficial subcutis, being composed of ovoid cells in a fibromyxoid background with hyalinized giant rosettes. The S100 immunoreactivity ranged from very focal to absent. Similar to other known fusion genes in OFMT, BCORL1, CREBBP and KDM2A are also involved in histone modification. In summary, we expand the spectrum of molecular abnormalities in OFMT with 2 novel fusions, CREBBP‐BCORL1 and KDM2A‐WWTR1, further implicating the epigenetic deregulation as the leading pathogenetic mechanism in OFMT.


The American Journal of Surgical Pathology | 2017

Recurrent BRAF Gene Rearrangements in Myxoinflammatory Fibroblastic Sarcomas, but Not Hemosiderotic Fibrolipomatous Tumors.

Yu-Chien Kao; Valentina Ranucci; Lei Zhang; Yun-Shao Sung; Edward A. Athanasian; David Swanson; Brendan C. Dickson; Cristina R. Antonescu

Myxoinflammatory fibroblastic sarcoma (MIFS) is a low grade soft tissue sarcoma with a predilection for acral sites, being associated with a high rate of local recurrence but very infrequent distant metastases. Although a t(1;10) translocation resulting in TGFBR3-MGEA5 fusion has been reported as a recurrent genetic event in MIFS, this abnormality is seen only in a subset of cases. As no studies to date have investigated the spectrum of alternative genetic alterations in TGFBR3-MGEA5 fusion negative MIFS, we undertook a genetic analysis of this particular cohort for further molecular classification. Triggered by an index case occurring in the finger of a 37-year-old female and harboring a novel TOM1L2-BRAF fusion by targeted RNA sequencing we investigated potential recurrent BRAF abnormalities by screening a large group of 19 TGFBR3-MGEA5 fusion negative MIFS by fluorescence in situ hybridization. There were 6 (32%) additional MIFS with BRAF genetic abnormalities, including 5 gene rearrangements and one showing BRAF amplification. Interestingly, VGLL3 amplification, a recurrent genetic abnormality coexisting with t(1;10) in some MIFS, was also detected by fluorescence in situ hybridization in 4/6 (67%) BRAF-rearranged MIFS, but not in the BRAF-amplified case. Up-regulated VGLL3 mRNA expression was also demonstrated in the index case by RNA sequencing. The 7 BRAF-rearranged/amplified MIFS arose in the fingers (n=3), and 1 each in wrist, forearm, foot, and knee, of adult patients (36 to 74 y; M:F=4:3). The histologic spectrum ranged from predominantly solid growth of plump histiocytoid to epithelioid tumor cells with focal myxoid change to a predominantly myxoid background with scattered tumor cells. Varying degree of inflammatory infiltrates and large tumor cells with virocyte-like macronucleoli were observed in most cases. Immunohistochemical stains of phosphorylated ERK, a downstream effector of BRAF activation, were positive in all 4 cases tested (2 diffuse strong, 2 focal strong). Unlike t(1;10), BRAF rearrangements were only found in MIFS but not in 6 hemosiderotic fibrolipomatous tumor (HFLT) lacking TGFBR3-MGEA5 fusions (including 2 pure HFLT, 2 hybrid HFLT-MIFS, and 2 associated with pleomorphic hyalinizing angiectatic tumors).

Collaboration


Dive into the Yu-Chien Kao's collaboration.

Top Co-Authors

Avatar

Cristina R. Antonescu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yun-Shao Sung

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chun-Liang Chen

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shih-Chiang Huang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Narasimhan P. Agaram

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Singer

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

William D. Tap

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge