Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Chin Chiu is active.

Publication


Featured researches published by Yu-Chin Chiu.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Decoding cognitive control in human parietal cortex

Michael Esterman; Yu-Chin Chiu; Benjamin J. Tamber-Rosenau; Steven Yantis

Efficient execution of perceptual-motor tasks requires rapid voluntary reconfiguration of cognitive task sets as circumstances unfold. Such acts of cognitive control, which are thought to rely on a network of cortical regions in prefrontal and posterior parietal cortex, include voluntary shifts of attention among perceptual inputs or among memory representations, or switches between categorization or stimulus-response mapping rules. A critical unanswered question is whether task set shifts in these different domains are controlled by a common, domain-independent mechanism or by separate, domain-specific mechanisms. Recent studies have implicated a common region of medial superior parietal lobule (mSPL) as a domain-independent source of cognitive control during shifts between perceptual, mnemonic, and rule representations. Here, we use fMRI and event-related multivoxel pattern classification to show that spatial patterns of brain activity within mSPL reliably express which of several domains of cognitive control is at play on a moment-by-moment basis. Critically, these spatiotemporal brain patterns are stable over time within subjects tested several months apart and across a variety of tasks, including shifting visuospatial attention, switching categorization rules, and shifting attention in working memory.


The Journal of Neuroscience | 2009

A Domain-Independent Source of Cognitive Control for Task Sets: Shifting Spatial Attention and Switching Categorization Rules

Yu-Chin Chiu; Steven Yantis

To optimize task performance as circumstances unfold, cognitive control mechanisms configure the brain to prepare for upcoming events through voluntary shifts in task set. A foundational unanswered question concerns whether different domains of cognitive control (e.g., spatial attention shifts, shifts between categorization rules, or shifts between stimulus–response mapping rules) are associated with separate, domain-specific control mechanisms, or whether a common, domain-independent source of control initiates shifts in all domains. Previous studies have tested different domains of cognitive control in separate groups of subjects using different paradigms, yielding equivocal conclusions. Here, using rapid event-related MRI, we report evidence from a single paradigm in which subjects were cued to perform both shifts of spatial attention and switches between categorization rules. A conjunction analysis revealed a common transient signal evoked by switch cues in medial superior parietal lobule for both domains of control, revealing a single domain-independent control mechanism.


NeuroImage | 2010

Avoiding non-independence in fMRI data analysis: Leave one subject out

Michael Esterman; Benjamin J. Tamber-Rosenau; Yu-Chin Chiu; Steven Yantis

Concerns regarding certain fMRI data analysis practices have recently evoked lively debate. The principal concern regards the issue of non-independence, in which an initial statistical test is followed by further non-independent statistical tests. In this report, we propose a simple, practical solution to reduce bias in secondary tests due to non-independence using a leave-one-subject-out (LOSO) approach. We provide examples of this method, show how it reduces effect size inflation, and suggest that it can serve as a functional localizer when within-subject methods are impractical.


Journal of Cognitive Neuroscience | 2011

Cortical mechanisms of cognitive control for shifting attention in vision and working memory

Benjamin J. Tamber-Rosenau; Michael Esterman; Yu-Chin Chiu; Steven Yantis

Organisms operate within both a perceptual domain of objects and events, and a mnemonic domain of past experiences and future goals. Each domain requires a deliberate selection of task-relevant information, through deployments of external (perceptual) and internal (mnemonic) attention, respectively. Little is known about the control of attention shifts in working memory, or whether voluntary control of attention in these two domains is subserved by a common or by distinct functional networks. We used human fMRI to examine the neural basis of cognitive control while participants shifted attention in vision and in working memory. We found that these acts of control recruit in common a subset of the dorsal fronto-parietal attentional control network, including the medial superior parietal lobule, intraparietal sulcus, and superior frontal sulcus/gyrus. Event-related multivoxel pattern classification reveals, however, that these regions exhibit distinct spatio-temporal patterns of neural activity during internal and external shifts of attention, respectively. These findings constrain theoretical accounts of selection in working memory and perception by showing that populations of neurons in dorsal fronto-parietal network regions exhibit selective tuning for acts of cognitive control in different cognitive domains.


Journal of Experimental Psychology: General | 2014

Unconsciously triggered response inhibition requires an executive setting.

Yu-Chin Chiu; Adam R. Aron

Much research on response inhibition has focused on a consciously triggered variety (i.e., outright stopping of action). However, recent studies have shown that response inhibition can also be triggered unconsciously. For example, van Gaal, Ridderinkhof, Scholte, and Lamme (2010) showed that an unconscious no-go prime slowed down ongoing behavior, at least when outright stopping was sometimes required (i.e., in an executive setting). Here we replicated that result but also went further by including a condition with no executive setting. Then there was no slowing following a no-go prime. These results support the hypothesis that an executive setting is necessary for unconsciously triggered inhibition. We speculate that this arises from the fact that when the context includes outright stopping, the brain network for response inhibition is primed, and it can be triggered by the unconscious prime. The result has theoretical implications for the distinction between conscious and unconscious response inhibition and also clinical implications for how to train response inhibition so that it is instantiated automatically.


Journal of Cognitive Neuroscience | 2011

Decoding task-based attentional modulation during face categorization

Yu-Chin Chiu; Michael Esterman; Yuefeng Han; Heather E. Rosen; Steven Yantis

Attention is a neurocognitive mechanism that selects task-relevant sensory or mnemonic information to achieve current behavioral goals. Attentional modulation of cortical activity has been observed when attention is directed to specific locations, features, or objects. However, little is known about how high-level categorization task set modulates perceptual representations. In the current study, observers categorized faces by gender (male vs. female) or race (Asian vs. White). Each face was perceptually ambiguous in both dimensions, such that categorization of one dimension demanded selective attention to task-relevant information within the face. We used multivoxel pattern classification to show that task-specific modulations evoke reliably distinct spatial patterns of activity within three face-selective cortical regions (right fusiform face area and bilateral occipital face areas). This result suggests that patterns of activity in these regions reflect not only stimulus-specific (i.e., faces vs. houses) responses but also task-specific (i.e., race vs. gender) attentional modulation. Furthermore, exploratory whole-brain multivoxel pattern classification (using a searchlight procedure) revealed a network of dorsal fronto-parietal regions (left middle frontal gyrus and left inferior and superior parietal lobule) that also exhibit distinct patterns for the two task sets, suggesting that these regions may represent abstract goals during high-level categorization tasks.


Journal of Cognitive Neuroscience | 2014

Opposing effects of appetitive and aversive cues on go/no-go behavior and motor excitability

Yu-Chin Chiu; Roshan Cools; Adam R. Aron

Everyday life, as well as psychiatric illness, is replete with examples where appetitive and aversive stimuli hijack the will, leading to maladaptive behavior. Yet the mechanisms underlying this phenomenon are not well understood. Here we investigate how motivational cues influence action tendencies in healthy individuals with a novel paradigm. Behaviorally, we observed that an appetitive cue biased go behavior (making a response), whereas an aversive cue biased no-go behavior (withholding a response). We hypothesized that the origin of this behavioral go/no-go bias occurs at the motor system level. To test this, we used single-pulse TMS as a motor system probe (rather than a disruptive tool) to index motivational biasing. We found that the appetitive cue biased the participants to go more by relatively increasing motor system excitability, and that the aversive cue biased participants to no-go more by relatively decreasing motor system excitability. These results show, first, that maladaptive behaviors arise from motivational cues quickly spilling over into the motor system and biasing behavior even before action selection and, second, that this occurs in opposing directions for appetitive and aversive cues.


Journal of Cognitive Neuroscience | 2012

Response suppression by automatic retrieval of stimulus-stop association: Evidence from transcranial magnetic stimulation

Yu-Chin Chiu; Adam R. Aron; Frederick Verbruggen

Behavioral studies show that subjects respond more slowly to stimuli to which they previously stopped. This response slowing could be explained by “automatic inhibition” (i.e., the reinstantiation of motor suppression when a stimulus retrieves a stop association). Here we tested this using TMS. In Experiment 1, participants were trained to go or no-go to stimuli. Then, in a test phase, we compared the corticospinal excitability for go stimuli that were previously associated with stopping (no-go_then_go) with go stimuli that were previously associated with going (go_then_go). Corticospinal excitability was reduced for no-go_then_go compared with go_then_go stimuli at a mere 100 msec poststimulus. Although these results fit with automatic inhibition, there was, surprisingly, no suppression for no-go_then_no-go stimuli, although this should occur. We speculated that automatic inhibition lies within a continuum between effortful top–down response inhibition and no inhibition at all. When the need for executive control and active response suppression disappears, so does the manifestation of automatic inhibition. Therefore, it should emerge during go/no-go learning and disappear as performance asymptotes. Consistent with this idea, in Experiment 2, we demonstrated reduced corticospinal excitability for no-go versus go trials most prominently in the midphase of training but it wears off as performance asymptotes. We thus provide neurophysiological evidence for an inhibition mechanism that is automatically reinstantiated when a stimulus retrieves a learned stopping episode, but only in an executive context in which active suppression is required. This demonstrates that automatic and top–down inhibition jointly contribute to goal-directed behavior.


Neuropsychologia | 2012

Tracking cognitive fluctuations with multivoxel pattern time course (MVPTC) analysis.

Yu-Chin Chiu; Michael Esterman; Leon Gmeindl; Steven Yantis

The posterior parietal cortex, including the medial superior parietal lobule (mSPL), becomes transiently more active during acts of cognitive control in a wide range of domains, including shifts of spatial and nonspatial visual attention, shifts between working memory representations, and shifts between categorization rules. Furthermore, spatial patterns of activity within mSPL, identified using multivoxel pattern analysis (MVPA), reliably distinguish between different acts of control. Here we describe a novel multivoxel pattern-based analysis that uses fluctuations in cognitive state over time to reveal inter-regional functional connectivity. First, we used MVPA to model patterns of activity in mSPL associated with shifting or maintaining spatial attention. We then computed a multivoxel pattern time course (MVPTC) that reflects, moment-by-moment, the degree to which the pattern of activity in mSPL more closely matches an attention-shift pattern or a sustained-attention pattern. We then entered the MVPTC as a regressor in a univariate (i.e., voxelwise) general linear model (GLM) to identify voxels whose BOLD activity covaried with the MVPTC. This analysis revealed several regions, including the striatum of the basal ganglia and bilateral middle frontal gyrus, whose activity was significantly correlated with the MVPTC in mSPL. For comparison, we also conducted a conventional functional connectivity analysis, entering the mean BOLD time course in mSPL as a regressor in a univariate GLM. The latter analysis revealed correlations in extensive regions of the frontal lobes but not in any subcortical area. The MVPTC analysis provides greater sensitivity (e.g., revealing the striatal-mSPL connectivity) and greater specificity (i.e., revealing more-focal clusters) than a conventional functional connectivity analysis. We discuss the broad applicability of MVPTC analysis to a variety of neuroimaging contexts.


NeuroImage | 2010

Exploration of function-neurotransmitter correlation using binding potential maps of multiple receptor systems of healthy human volunteers

Hiroto Kuwabara; Blanca Bisuna; Steven Yantis; Yu-Chin Chiu; Vanessa Raymont; Dean F. Wong

Objectives: Once clusters of functionally activated voxels associated with a specific cognitive function are identified using functional MRI (fMRI), a crucial question is what neurotransmitter systems may be involved. A tool was developed to link fMRI-identified regions of interest with normal human binding potential maps that were generated from current and historic PET scans to cover multiple neurotransmitter systems. Such a tool may be useful in planning neuroreceptor mapping studies based on findings from fMRI studies.

Collaboration


Dive into the Yu-Chin Chiu's collaboration.

Top Co-Authors

Avatar

Steven Yantis

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam R. Aron

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leon Gmeindl

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blanca Bisuna

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuefeng Han

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge