Yu-Ching Cheng
University of Maryland, Baltimore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu-Ching Cheng.
Nature Genetics | 2012
Céline Bellenguez; Steve Bevan; Andreas Gschwendtner; Chris C. A. Spencer; Annette I. Burgess; M. Pirinen; Caroline Jackson; Matthew Traylor; Amy Strange; Zhan Su; Gavin Band; Paul D. Syme; Rainer Malik; Joanna Pera; Bo Norrving; Robin Lemmens; Colin Freeman; Renata Schanz; Tom James; Deborah Poole; Lee Murphy; Helen Segal; Lynelle Cortellini; Yu-Ching Cheng; Daniel Woo; Michael A. Nalls; Bertram Müller-Myhsok; Christa Meisinger; Udo Seedorf; Helen Ross-Adams
Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 × 10−11; odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28–1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.
Nature Genetics | 2012
Elizabeth G. Holliday; Jane Maguire; Tiffany-Jane Evans; Simon A. Koblar; Jim Jannes; Jonathan Sturm; Graeme J. Hankey; Ross Baker; Jonathan Golledge; Mark W. Parsons; Rainer Malik; Mark McEvoy; Erik Biros; Martin D. Lewis; Lisa F. Lincz; Roseanne Peel; Christopher Oldmeadow; Wayne Smith; Pablo Moscato; Simona Barlera; Steve Bevan; Joshua C. Bis; Eric Boerwinkle; Giorgio B. Boncoraglio; Thomas G. Brott; Robert D. Brown; Yu-Ching Cheng; John W. Cole; Ioana Cotlarciuc; William J. Devan
Genome-wide association studies (GWAS) have not consistently detected replicable genetic risk factors for ischemic stroke, potentially due to etiological heterogeneity of this trait. We performed GWAS of ischemic stroke and a major ischemic stroke subtype (large artery atherosclerosis, LAA) using 1,162 ischemic stroke cases (including 421 LAA cases) and 1,244 population controls from Australia. Evidence for a genetic influence on ischemic stroke risk was detected, but this influence was higher and more significant for the LAA subtype. We identified a new LAA susceptibility locus on chromosome 6p21.1 (rs556621: odds ratio (OR) = 1.62, P = 3.9 × 10−8) and replicated this association in 1,715 LAA cases and 52,695 population controls from 10 independent population cohorts (meta-analysis replication OR = 1.15, P = 3.9 × 10−4; discovery and replication combined OR = 1.21, P = 4.7 × 10−8). This study identifies a genetic risk locus for LAA and shows how analyzing etiological subtypes may better identify genetic risk alleles for ischemic stroke.
Stroke | 2015
Andrew B. Mitchell; John W. Cole; Patrick F. McArdle; Yu-Ching Cheng; Kathleen A. Ryan; Mary J. Sparks; Braxton D. Mitchell; Steven J. Kittner
Background and Purpose— Body mass index has been associated with ischemic stroke in older populations, but its association with stroke in younger populations is not known. In light of the current obesity epidemic in the United States, the potential impact of obesity on stroke risk in young adults deserves attention. Methods— A population-based case–control study design with 1201 cases and 1154 controls was used to investigate the relationship of obesity and young onset ischemic stroke. Stroke cases were between the ages of 15 and 49 years. Logistic regression analysis was used to evaluate the association between body mass index and ischemic stroke with and without adjustment for comorbid conditions associated with stroke. Results— In analyses adjusted for age, sex, and ethnicity, obesity (body mass index >30 kg/m2) was associated with an increased stroke risk (odds ratio, 1.57; 95% confidence interval, 1.28–1.94) although this increased risk was highly attenuated and not statistically significant after adjustment for smoking, hypertension, and diabetes mellitus. Conclusions— These results indicate that obesity is a risk factor for young onset ischemic stroke and suggest that this association may be partially mediated through hypertension, diabetes mellitus, or other variables associated with these conditions.
PLOS ONE | 2012
John W. Cole; O. Colin Stine; Xinyue Liu; Abhishek Pratap; Yu-Ching Cheng; Luke J. Tallon; Lisa Sadzewicz; Nicole Dueker; Marcella A. Wozniak; Barney J. Stern; James F. Meschia; Braxton D. Mitchell; Steven Kittner; Jeffrey R. O'Connell
The genetic architecture of ischemic stroke is complex and is likely to include rare or low frequency variants with high penetrance and large effect sizes. Such variants are likely to provide important insights into disease pathogenesis compared to common variants with small effect sizes. Because a significant portion of human functional variation may derive from the protein-coding portion of genes we undertook a pilot study to identify variation across the human exome (i.e., the coding exons across the entire human genome) in 10 ischemic stroke cases. Our efforts focused on evaluating the feasibility and identifying the difficulties in this type of research as it applies to ischemic stroke. The cases included 8 African-Americans and 2 Caucasians selected on the basis of similar stroke subtypes and by implementing a case selection algorithm that emphasized the genetic contribution of stroke risk. Following construction of paired-end sequencing libraries, all predicted human exons in each sample were captured and sequenced. Sequencing generated an average of 25.5 million read pairs (75 bp×2) and 3.8 Gbp per sample. After passing quality filters, screening the exomes against dbSNP demonstrated an average of 2839 novel SNPs among African-Americans and 1105 among Caucasians. In an aggregate analysis, 48 genes were identified to have at least one rare variant across all stroke cases. One gene, CSN3, identified by screening our prior GWAS results in conjunction with our exome results, was found to contain an interesting coding polymorphism as well as containing excess rare variation as compared with the other genes evaluated. In conclusion, while rare coding variants may predispose to the risk of ischemic stroke, this fact has yet to be definitively proven. Our study demonstrates the complexities of such research and highlights that while exome data can be obtained, the optimal analytical methods have yet to be determined.
Human Molecular Genetics | 2015
Wensheng Lu; Yu-Ching Cheng; Keping Chen; Hong Wang; Glenn S. Gerhard; Christopher D. Still; Xin Chu; Rongze Yang; Ankita Parihar; Jeffrey R. O'Connell; Toni I. Pollin; Eduardo Anglés-Cano; Michael J. Quon; Braxton D. Mitchell; Alan R. Shuldiner; Mao Fu
Lipoprotein (a) [Lp(a)] is an independent risk factor for atherosclerosis-related events that is under strong genetic control (heritability = 0.68-0.98). However, causal mutations and functional validation of biological pathways modulating Lp(a) metabolism are lacking. We performed a genome-wide association scan to identify genetic variants associated with Lp(a)-cholesterol levels in the Old Order Amish. We confirmed a previously known locus on chromosome 6q25-26 and found Lp(a) levels also to be significantly associated with a SNP near the APOA5-APOA4-APOC3-APOA1 gene cluster on chromosome 11q23 linked in the Amish to the APOC3 R19X null mutation. On 6q locus, we detected associations of Lp(a)-cholesterol with 118 common variants (P = 5 × 10(-8) to 3.91 × 10(-19)) spanning a ∼5.3 Mb region that included the LPA gene. To further elucidate variation within LPA, we sequenced LPA and identified two variants most strongly associated with Lp(a)-cholesterol, rs3798220 (P = 1.07 × 10(-14)) and rs10455872 (P = 1.85 × 10(-12)). We also measured copy numbers of kringle IV-2 (KIV-2) in LPA using qPCR. KIV-2 numbers were significantly associated with Lp(a)-cholesterol (P = 2.28 × 10(-9)). Conditional analyses revealed that rs3798220 and rs10455872 were associated with Lp(a)-cholesterol levels independent of each other and KIV-2 copy number. Furthermore, we determined for the first time that levels of LPA mRNA were higher in the carriers than non-carriers of rs10455872 (P = 0.0001) and were not different between carriers and non-carriers of rs3798220. Protein levels of apo(a) were higher in the carriers than non-carriers of both rs10455872 and rs3798220. In summary, we identified multiple independent genetic determinants for Lp(a)-cholesterol. These findings provide new insights into Lp(a) regulation.
Clinical Cancer Research | 2015
Michael L. Maitland; C. Xu; Yu-Ching Cheng; Emily Kistner-Griffin; Kathleen A. Ryan; Theodore Karrison; Soma Das; Dara G. Torgerson; Eric R. Gamazon; Vasiliki Thomeas; Matthew R. Levine; Paul A. Wilson; Nan Bing; Yuan Liu; Lon R. Cardon; Lini Pandite; Jeffrey R. O'Connell; Nancy J. Cox; Braxton D. Mitchell; Mark J. Ratain; Alan R. Shuldiner
Purpose: VEGF receptor (VEGFR) kinases are important drug targets in oncology that affect function of systemic endothelial cells. To discover genetic markers that affect VEGFR inhibitor pharmacodynamics, we performed a genome-wide association study of serum soluble vascular VEGFR2 concentrations [sVEGFR2], a pharmacodynamic biomarker for VEGFR2 inhibitors. Experimental Design: We conducted a genome-wide association study (GWAS) of [sVEGFR2] in 736 healthy Old Order Amish volunteers. Gene variants identified from the GWAS were genotyped serially in a cohort of 128 patients with advanced solid tumor with baseline [sVEGFR2] measurements, and in 121 patients with renal carcinoma with [sVEGFR2] measured before and during pazopanib therapy. Results: rs34231037 (C482R) in KDR, the gene encoding sVEGFR2 was found to be highly associated with [sVEGFR2], explaining 23% of the variance (P = 2.7 × 10−37). Association of rs34231037 with [sVEGFR2] was replicated in 128 patients with cancer with comparable effect size (P = 0.025). Furthermore, rs34231037 was a significant predictor of changes in [sVEGFR2] in response to pazopanib (P = 0.01). Conclusion: Our findings suggest that genome-wide analysis of phenotypes in healthy populations can expedite identification of candidate pharmacogenetic markers. Genotyping for germline variants in KDR may have clinical utility in identifying patients with cancer with unusual sensitivity to effects of VEGFR2 kinase inhibitors. Clin Cancer Res; 21(2); 365–72. ©2014 AACR.
G3: Genes, Genomes, Genetics | 2011
Yu-Ching Cheng; Jeffrey R. O’Connell; John W. Cole; O. Colin Stine; Nicole Dueker; Patrick F. McArdle; Mary J. Sparks; Jess Shen; Cathy C. Laurie; Sarah Nelson; Kimberly F. Doheny; Hua Ling; Elizabeth W. Pugh; Thomas G. Brott; Robert D. Brown; James F. Meschia; Michael A. Nalls; Stephen S. Rich; Bradford B. Worrall; Christopher D. Anderson; Alessandro Biffi; Lynelle Cortellini; Karen L. Furie; Natalia S. Rost; Jonathan Rosand; Teri A. Manolio; Steven J. Kittner; Braxton D. Mitchell
Ischemic stroke (IS) is among the leading causes of death in Western countries. There is a significant genetic component to IS susceptibility, especially among young adults. To date, research to identify genetic loci predisposing to stroke has met only with limited success. We performed a genome-wide association (GWA) analysis of early-onset IS to identify potential stroke susceptibility loci. The GWA analysis was conducted by genotyping 1 million SNPs in a biracial population of 889 IS cases and 927 controls, ages 15–49 years. Genotypes were imputed using the HapMap3 reference panel to provide 1.4 million SNPs for analysis. Logistic regression models adjusting for age, recruitment stages, and population structure were used to determine the association of IS with individual SNPs. Although no single SNP reached genome-wide significance (P < 5 × 10−8), we identified two SNPs in chromosome 2q23.3, rs2304556 (in FMNL2; P = 1.2 × 10−7) and rs1986743 (in ARL6IP6; P = 2.7 × 10−7), strongly associated with early-onset stroke. These data suggest that a novel locus on human chromosome 2q23.3 may be associated with IS susceptibility among young adults.
Obesity | 2010
Yu-Ching Cheng; Wen-Hong L. Kao; Braxton D. Mitchell; A. Richey Sharrett; Kathleen A. Ryan; Robert A. Vogel; Alan R. Shuldiner; Toni I. Pollin
Circulating levels of inflammatory markers predict the risk of cardiovascular disease (CVD), mediated perhaps in part by dietary fat intake, through mechanisms only partially understood. To evaluate post‐fat load changes in inflammatory markers and genetic influences on these changes, we administered a standardized high‐fat meal to 838 related Amish subjects as part of the Heredity and Phenotype Intervention (HAPI) Heart Study and measured a panel of inflammatory markers, including C‐reactive protein (CRP), interleukin‐1β (IL‐1β), matrix metalloproteinase‐1 and ‐9 (MMP‐1 and MMP‐9), and white blood cell (WBC) count, before and 4 h after fat challenge (CRP prechallenge only). Heritabilities (h2 ± s.d.) of basal inflammatory levels ranged from 16 ± 8% for MMP‐9 (P = 0.02) to 90 ± 7% for MMP‐1 (P < 0.0001). Post‐fat load, circulating levels of WBC, MMP‐1, and MMP‐9 increased by 16, 32, and 43% (all P < 0.0001), with no significant changes in IL‐1β. Postprandial changes over the 4‐h period were modestly heritable for WBC (age‐ and sex‐adjusted h2 = 14 ± 9%, P = 0.04), but the larger MMP‐1 and MMP‐9 changes appeared to be independent of additive genetic effects. These results reveal that a high‐fat meal induces a considerable inflammatory response. Genetic factors appear to play a significant role influencing basal inflammatory levels but to have minimal influence on post‐fat intake inflammatory changes.
Stroke | 2014
Baijia Jiang; Kathleen A. Ryan; Ali Hamedani; Yu-Ching Cheng; Mary J. Sparks; Deborah Koontz; Christopher J. Bean; Margaret Gallagher; W. Craig Hooper; Patrick F. McArdle; Jeffrey R. O’Connell; O. Colin Stine; Marcella A. Wozniak; Barney J. Stern; Braxton D. Mitchell; Steven J. Kittner; John W. Cole
Background and Purpose— Although the prothrombin G20210A mutation has been implicated as a risk factor for venous thrombosis, its role in arterial ischemic stroke is unclear, particularly among young adults. To address this issue, we examined the association between prothrombin G20210A and ischemic stroke in a white case–control population and additionally performed a meta-analysis. Methods— From the population-based Genetics of Early Onset Stroke (GEOS) study, we identified 397 individuals of European ancestry aged 15 to 49 years with first-ever ischemic stroke and 426 matched controls. Logistic regression was used to calculate odds ratios (ORs) in the entire population and for subgroups stratified by sex, age, oral contraceptive use, migraine, and smoking status. A meta-analysis of 17 case–control studies (n=2305 cases <55 years) was also performed with and without GEOS data. Results— Within GEOS, the association of the prothrombin G20210A mutation with ischemic stroke did not achieve statistical significance (OR=2.5; 95% confidence interval [CI]=0.9–6.5; P=0.07). However, among adults aged 15 to 42 years (younger than median age), cases were significantly more likely than controls to have the mutation (OR=5.9; 95% CI=1.2–28.1; P=0.03), whereas adults aged 42 to 49 years were not (OR=1.4; 95% CI=0.4–5.1; P=0.94). In our meta-analysis, the mutation was associated with significantly increased stroke risk in adults ⩽55 years (OR=1.4; 95% CI=1.1–1.9; P=0.02), with significance increasing with addition of the GEOS results (OR=1.5; 95% CI=1.1–2.0; P=0.005). Conclusions— The prothrombin G20210A mutation is associated with ischemic stroke in young adults and may have an even stronger association among those with earlier onset strokes. Our finding of a stronger association in the younger young adult population requires replication.
Circulation-cardiovascular Genetics | 2009
Yu-Ching Cheng; Wen Hong L Kao; Braxton D. Mitchell; Jeffrey R. O'Connell; Haiqing Shen; Patrick F. McArdle; Quince Gibson; Kathleen A. Ryan; Alan R. Shuldiner; Toni I. Pollin
Background—Matrix metalloproteinase (MMP)-1 may play a role in cardiovascular disease susceptibility by influencing plaque rupture via its ability to degrade extracellular collagens. Methods and Results—We performed a genome-wide association analysis of circulating MMP-1 levels using 500 K single-nucleotide polymorphisms (SNPs) to identify genes influencing variation in serum MMP-1 levels in 778 healthy Amish adults. Serum MMP-1 levels, logarithm transformed, and adjusted for age and sex, were screened for association with SNPs using mixed-model variance components to account for familial relatedness. Median MMP-1 level was 3.05 ng/mL (interquartile range: 1.82 to 5.04 ng/mL) with an estimated heritability of 81% (P<0.0001). Serum MMP-1 levels were strongly associated with a cluster of 179 SNPs extending over an 11.5-megabase region on chromosome 11q. The peak association was with rs495366 (P=5.73×10−34), located within the region between MMP-1 and MMP-3 and having a minor allele frequency of 0.36. Two other SNPs within the 11q region, rs12289128 and rs11226373, were strongly associated with MMP-1 levels after accounting for rs495366 (P≤10−7). These 3 SNPs explained 31% of the variance in MMP-1 levels after adjusting for age and sex. Conclusions—This study provides strong evidence that the serum MMP-1 level is highly heritable and that SNPs near MMPs on chromosome 11q explain a significant portion of the variation in MMP-1 levels. Identification of the genetic variants that influence MMP-1 levels may provide insights into genetic mechanisms of cardiovascular disease.